Skip to main content

Connectivity Analysis of Human Functional MRI Data: From Linear to Nonlinear and Static to Dynamic

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4091))

Included in the following conference series:

  • 1343 Accesses

Abstract

In this paper, we describe approaches for analyzing functional MRI data to assess brain connectivity. Using phase-space embedding, bivariate embedding dimensions and delta-epsilon methods are introduced to characterize nonlinear connectivity in fMRI data. The nonlinear approaches were applied to resting state data and continuous task data and their results were compared with those obtained from the conventional approach of linear correlation. The nonlinear methods captured couplings not revealed by linear correlation and was found to be more selective in identifying true connectivity. In addition to the nonlinear methods, the concept of Granger causality was applied to infer directional information transfer among the connected brain regions. Finally, we demonstrate the utility of moving window connectivity analysis in understanding temporally evolving neural processes such as motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, L., Harrison, L.M., Mechelli, A.: A report of the functional connectivity workshop, Düsseldorf 2002. Neuroimage 19(2), 457–465 (2003)

    Article  Google Scholar 

  2. Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping 2, 56–78 (1995)

    Article  Google Scholar 

  3. Sarbadhikari, S.N., Chakrabarty, K.: Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization. Med. Eng. Phys. 23(7), 445–455 (2001)

    Article  Google Scholar 

  4. Zhuang, J., LaConte, S.M., Peltier, S.J., Zhang, K., Hu, X.P.: Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination. Neuroimage 25(2), 462–470 (2005)

    Article  Google Scholar 

  5. Bhattacharya, S., Ringo Ho, M.H., Purkayastha, S.: A Bayesian approach to modeling dynamic effective connectivity with fMRI data. Neuroimage 30(3), 794–812 (2006)

    Article  Google Scholar 

  6. Büchel, C., Friston, K.: Dynamic changes in effective connectivity characterized by variable parameter regression and Kalman filtering. Human Brain Mapping 6, 403–408 (1998)

    Article  Google Scholar 

  7. Friston, K., Harrison, L., Penny, W.: Dynamic causal modeling. Neuroimage 19(4), 1273–1302 (2003)

    Article  Google Scholar 

  8. Hinrichs, H., Heinze, H.J., Schoenfeld, M.A.: Causal visual interactions as revealed by an information theoretic measure and fMRI. Neuroimage (in press)

    Google Scholar 

  9. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)

    Article  MathSciNet  Google Scholar 

  10. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Cambridge university press, UK (1996)

    Google Scholar 

  11. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L. (eds.) Dynamical Systems and Turbulence, vol. 898, pp. 366–381. Springer, Berlin (1980)

    Chapter  Google Scholar 

  12. Cao, L., Mees, A., Judd, K.: Dynamics from multivariate time series. Physica D 121, 75–88 (1998)

    Article  MATH  Google Scholar 

  13. LaConte, S., Peltier, S., Kadah, Y., Ngan, S., Deshpande, G., Hu, X.: Detecting nonlinear dynamics of functional connectivity. In: Proc. SPIE Intl. Soc. Opt. Eng., vol. 5369, pp. 227–237 (2004)

    Google Scholar 

  14. Kaplan, D.: Exceptional events as evidence for determinism. Physica D 73, 38–48 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoyer, D., Kaplan, D., Friedrich, S., Eiselt, M.: Determinism in bivariate cardiorespiratory phase-space sets. IEEE Eng. Med. Biol. 17, 26–31 (1998)

    Article  Google Scholar 

  16. Hu, X.P., Le, T.H., Parrish, T., Erhard, P.: Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn. Reson. Med. 34(2), 201–212 (1995)

    Article  Google Scholar 

  17. McKeown, M.J., Sejnowski, T.J.: Independent component analysis of fMRI data: examining the assumptions. Human Brain Mapping 6, 160–188 (1998)

    Article  Google Scholar 

  18. Liu, J.Z., Huang, H.B., Sahgal, V., Hu, X.P., Yue, G.H.: Deterioration of cortical functional connectivity due to muscle fatigue. Proc. Intl. Soc. Mag. Reson. Med. 13, 2679 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deshpande, G., LaConte, S., Peltier, S., Hu, X. (2006). Connectivity Analysis of Human Functional MRI Data: From Linear to Nonlinear and Static to Dynamic. In: Yang, GZ., Jiang, T., Shen, D., Gu, L., Yang, J. (eds) Medical Imaging and Augmented Reality. MIAR 2006. Lecture Notes in Computer Science, vol 4091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11812715_3

Download citation

  • DOI: https://doi.org/10.1007/11812715_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37220-2

  • Online ISBN: 978-3-540-37221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics