Skip to main content

A Logical Characterization of Forward and Backward Chaining in the Inverse Method

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4130))

Abstract

The inverse method is a generalization of resolution that can be applied to non-classical logics. We have recently shown how Andreoli’s focusing strategy can be adapted for the inverse method in linear logic. In this paper we introduce the notion of focusing bias for atoms and show that it gives rise to forward and backward chaining, generalizing both hyperresolution (forward) and SLD resolution (backward) on the Horn fragment. A key feature of our characterization is the structural, rather than purely operational, explanation for forward and backward chaining. A search procedure like the inverse method is thus able to perform both operations as appropriate, even simultaneously. We also present experimental results and an evaluation of the practical benefits of biased atoms for a number of examples from different problem domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2(3), 297–347 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreoli, J.-M.: Focussing and proof construction. Annals of Pure and Applied Logic 107, 131–163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework I & II. Technical Report CMU-CS-02-101 and 102, Department of Computer Science, Carnegie Mellon University, 2002. Revised (May 2003)

    Google Scholar 

  4. Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-order linear logic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 69–83. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 179–272. MIT Press, Cambridge (2001)

    Chapter  Google Scholar 

  7. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210 (1935): Szabo, M.E.: The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)

    Google Scholar 

  8. Girard, J.-Y.: Locus solum: from the rules of logic to the logic of rules. Mathematical Structures in Computer Science 11, 301–506 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110(2), 327–365 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jacob, M.: Howe. Proof Search Issues in Some Non-Classical Logics. PhD thesis, University of St. Andrews (September 1998)

    Google Scholar 

  11. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artificial Intelligence 2, 227–260 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Annals of Pure and Applied Logic 56, 239–311 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mantel, H., Otten, J.: LinTAP: A tableau prover for linear logic. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 217–231. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Miller, D.: A multiple-conclusion meta-logic. In: Abramsky, S. (ed.) Ninth Annual Symposium on Logic in Computer Science, Paris, France, July 1994, pp. 272–281. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  15. Sahlin, D., Franzén, T., Haridi, S.: An intuitionistic predicate logic theorem prover. Journal of Logic and Computation 2(5), 619–656 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tammet, T.: Resolution, inverse method and the sequent calculus. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997. LNCS, vol. 1289, pp. 65–83. Springer, Heidelberg (1997)

    Google Scholar 

  17. Tamura, N.: Llprover. At: http://bach.istc.kobe-u.ac.jp/llprover

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaudhuri, K., Pfenning, F., Price, G. (2006). A Logical Characterization of Forward and Backward Chaining in the Inverse Method. In: Furbach, U., Shankar, N. (eds) Automated Reasoning. IJCAR 2006. Lecture Notes in Computer Science(), vol 4130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814771_9

Download citation

  • DOI: https://doi.org/10.1007/11814771_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37187-8

  • Online ISBN: 978-3-540-37188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics