Skip to main content

The Effective Radius Model for Multi-hop Wireless Networks

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4138))

  • 719 Accesses

Abstract

In this paper, we introduce a novel model, termed as Effective Radius (ER), to calculate the expected number of t-hop neighbors in a multi-hop wireless network with a uniform node distribution on the average. This ER model is an analytical tool that recursively computes a t-hop effective radius for t=2, 3, ⋯. The total number of nodes covered by the disk with a t-hop effective radius equals to the expected number of nodes reachable through at most t hops in the original physical topology. We conduct extensive simulation studies to validate our model and the results demonstrate that the ER model is accurate and can be adaptive to different deployment scenarios. Our findings have interesting applications to the design and evaluation of multi-hop wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spencer, J.: The Strange Logic of Random Graphs. In: Algorithms and Combinatorics, vol. 22. Springer, Heidelberg (2001)

    Google Scholar 

  2. Kleinrock, L., Silvester, J.A.: Optimum transmission radii in packet radio networks or why six is a magic number. In: National Telecommunications Conference, Birmingham, Alabama, pp. 4.3.1–4.3.5. IEEE, Los Alamitos (1978)

    Google Scholar 

  3. Bettstetter, C.: On the Minimum Node Degree and Connectivity of a Wireless Multihop Network. In: The ACM Symposium on Mobile Adhoc Networking and Computing (MOBIHOC 2002), Lausanne, Switzerland, June 9–11, pp. 80–91 (2002)

    Google Scholar 

  4. Xue, F., Kumar, P.: The number of neighbors needed for connectivity of wireless networks. Wireless Networks 10(2), 169–181 (2004)

    Article  Google Scholar 

  5. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications, p. 90. IEEE Computer Society Press, Los Alamitos (1999)

    Chapter  Google Scholar 

  6. Johnson, D.B., Maltz, D.A., Broch, J.: DSR: The dynamic source routing protocol for multihop wireless ad hoc networks. In: Perkins, C. (ed.) Ad Hoc Networking, ch. 5, pp. 139–172. Addison-Wesley, Reading (2001), [Online]. Available: http://monarch.cs.rice.edu/monarch-papers/dsr-chapter00.ps

    Google Scholar 

  7. Li, X.-Y., Wan, P.-J., Wang, Y., Yi, C.-W.: Fault tolerant deployment and topology control in wireless networks. In: MobiHoc 2003: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, pp. 117–128. ACM Press, New York (2003)

    Chapter  Google Scholar 

  8. Schurgers, C., Tsiatsis, V., Ganeriwal, S., Srivastava, M.: Topology Management for Sensor Networks: Exploiting Latency and Density. In: The ACM Symposium on Mobile Adhoc Networking and Computing (MOBIHOC 2002), Lausanne, Switzerland, June 9–11, pp. 135–145 (2002)

    Google Scholar 

  9. Pan, J., Hou, Y.T., Cai, L., Shi, Y., Shen, S.X.: Topology control for wireless sensor networks. In: MobiCom 2003: Proceedings of the 9th annual international conference on Mobile computing and networking, pp. 286–299. ACM Press, New York (2003)

    Chapter  Google Scholar 

  10. Nasipuri, A., Castaneda, R., Das, S.R.: Performance of multipath routing for on-demand protocols in mobile ad hoc networks. Mob. Netw. Appl. 6(4), 339–349 (2001)

    Article  MATH  Google Scholar 

  11. Lou, W., Liu, W., Fang, Y.: Spread: Enhancing data confidentiality in mobile ad hoc networks. In: INFOCOM, pp. 2404–2413 (2004)

    Google Scholar 

  12. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, p. 197. Springer, Heidelberg (2003)

    Google Scholar 

  13. Zhu, S., Setia, S., Jajodia, S., Ning, P.: An interleaved hop-by-hop authentication scheme for filtering of injected false data in sensor networks. In: IEEE Symposium on Security and Privacy, pp. 259–271 (2004)

    Google Scholar 

  14. Yang, H., Ye, F., Yuan, Y., Lu, S., Arbaugh, W.: Toward resilient security in wireless sensor networks. In: MobiHoc 2005: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, pp. 34–45. ACM Press, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, L., Jiang, W., Xing, K., Park, E.K. (2006). The Effective Radius Model for Multi-hop Wireless Networks. In: Cheng, X., Li, W., Znati, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2006. Lecture Notes in Computer Science, vol 4138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814856_60

Download citation

  • DOI: https://doi.org/10.1007/11814856_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37189-2

  • Online ISBN: 978-3-540-37190-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics