Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4121))

Abstract

The Local Search algorithm is one of the simplest heuristic algothms for solving the MAX-SAT problem. The goal of this paper is to estimate the relative error produced by this algorithm being applied to random 3-CNFs with fixed density \(\varrho\). We prove that, for any \(\varrho\), there is a constant c such that a weakened version of Local Search that we call One-Pass Local Search almost surely outputs an assignment containing cn+o(n) unsatisfied clauses. Then using a certain assumtion we also show this for Local Search. Although the assumption remains unproved the results well matches experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D.: Lower bounds for random 3-SAT via differential equations. Theor. Comput. Sci. 265(1-2), 159–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asano, T., Williamson, D.: Improved approximation algorithms for MAX SAT. J. Algorithms 42(1), 173–202 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Goemans, M., Williamson, D.: New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gu, J.: Efficient local search for very large-scale satisfiability problem. ACM SIGART Bulletin 3(1), 8–12 (1992)

    Article  Google Scholar 

  5. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44, 279–303 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Karloff, H., Zwick, U.: A 7/8-approximation algorithm for MAX 3SAT? In: FOCS, pp. 406–415 (1997)

    Google Scholar 

  7. Koutsoupias, E., Papadimitriou, C.: On the greedy algorithm for satisfiability. Inf. Process. Lett. 43(1), 53–55 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: AAAI, pp. 440–446 (1992)

    Google Scholar 

  9. Wormald, N.: Differential equations for random processes and random graphs. The Annals of Applied Probability 5(4), 1217–1235 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bulatov, A.A., Skvortsov, E.S. (2006). Efficiency of Local Search. In: Biere, A., Gomes, C.P. (eds) Theory and Applications of Satisfiability Testing - SAT 2006. SAT 2006. Lecture Notes in Computer Science, vol 4121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814948_29

Download citation

  • DOI: https://doi.org/10.1007/11814948_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37206-6

  • Online ISBN: 978-3-540-37207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics