Skip to main content

Clustering Gene Expression Data for Periodic Genes Based on INMF

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

  • 1456 Accesses

Abstract

In this paper, we have explored the use of improved non – negative matrix factorization (INMF) to analyze gene expression data. Firstly, the mathematical principle of INMF algorithm is analyzed; Secondly, we proposed an INMF - based method for clustering periodic genes, which can provide valuable information for gene network research. Using simulated data, our approach is able to extract periodic genes subsets even when the signal-to-noise ratio is low. Subsequently, our approach is tested by real gene expression datasets from Yeast and is compared with the related other approaches. Our results showed that our scheme is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cho, R.J., Campbell, M.J., et al.: A Genome–Wide Transcriptional Analysis of the Mitotic Cell Cycle. Mol. Cell 2, 65–73 (1998)

    Article  Google Scholar 

  2. Spellman, P.T., Sherlock, G., Zhang, M.Q., et al.: Comprehensive Identification of Cell Cycle–Regulated Gene of the Yeast Saccharomyces Cerevisiae by Micro-Array Hybridation. Mol. Biol. Cell 9, 3273–3297 (1998)

    Google Scholar 

  3. Cho, R.J., Huang, M.X., Dong, H., et al.: Transcriptional Regulation and Function During the Human Cell Cycle. Nature Genetics 27, 48–54 (2001)

    Google Scholar 

  4. Lockhart, D.J., et al.: Expression Monitoring by Hybridization to High – Density Oligonucleotide Arrays. Nature Biotechnology 14, 1675–1680 (1996)

    Article  Google Scholar 

  5. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster Analysis and Display of Genome–wide Expression Patterns. Proc. Nat. Acad. Science USA. 95, 14863–14868 (1998)

    Article  Google Scholar 

  6. Lukashin, A.V., Fuchs, R.: Analysis of Temporal Gene Expression Profiles: Clustering by Simulated Annealing and Determining the Optimal Number of Clusters. Bioinformatics 17, 405–414 (2001)

    Article  Google Scholar 

  7. Mclachlan, G.J., Bean, R.W.: A Mixture Model–Based Approach to the Clustering of Micro-Array Expression Data. Bioinformatics 18, 413–422 (2002)

    Article  Google Scholar 

  8. Deutsch, J.M.: Evolutionary Algorithms for Finding Optimal Gene Sets in Microarray Prediction. Bioinformatics 19, 45–52 (2003)

    Article  Google Scholar 

  9. Raychaudhuri, S., Stuart, J.M., et al.: Principal Components Analysis to Summarize Micro-array Experiments: Application to Sporulation Time Series. In: Pacific Symposium on Biocomputing, pp. 455–466 (2000)

    Google Scholar 

  10. Wall, M.E., Rechtsteiner, A., et al.: Singular Value Decomposition and Principal Component Analysis. In: Berrar, D.P. (ed.) A Practical Approach to Micro-array Data Analysis, ch. 5, pp. 91–109. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  11. Holter, N.S., Mitra, M., Maritan, A., et al.: Fundamental Patterns Underlying Gene Expression Profiles: Simplicity From Complexity. Proc. Nat Acad. Science USA 97, 8409–8414 (2000)

    Article  Google Scholar 

  12. Alter, O., Brown, P.O., Botstein, D.: Singular Value Decomposition for Genome–Wide Expression Data Processing and Modelling. Proc. Nat. Acad. Science USA 97, 10101–10106 (2000)

    Article  Google Scholar 

  13. Wall, M.E., Dyck, P.A., Brettin, T.S.: SVDMAN - Singular Value Decomposition Analysis of Micro-array Data. Bioinformatics 17, 566–568 (2001)

    Article  Google Scholar 

  14. Liebermeister, W.: Linear Modes of Gene Expression Determined by Independent Component Analysis. Bioinformatics 18(1), 51–60 (2002)

    Article  Google Scholar 

  15. Yamanishi, Y., Itoh, M., Kanehisa, M.: Extraction of Organism Groups from Phylogenetic Profiled using Independent Component Analysis. Genome Informatics 13, 60–70 (2002)

    Google Scholar 

  16. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annu. Eugenics, pt. II 7, 179–188 (1936)

    Google Scholar 

  17. Brown, M., Grundy, W.N., Campbell, M.J., et al.: Knowledge - based Analysis of Microarray Data by Using Support Vector Machines. Proc. Nat. Acad. Science USA 97, 262–267 (2000)

    Article  Google Scholar 

  18. Duda, R.O., Hart, P.E., Stork, D.G.: Patten Classification, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  19. Whitfield, M.L., Sherlock, G., Saldanha, A.J., et al.: Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumor. Mol. Biol. Cell 13, 1977–2000 (2002)

    Article  Google Scholar 

  20. Wichert, S., Fokianos, K., Strimmer, K.: Identifying Periodically Expressed Transcripts in Microarray Time Data. Bioinformatics 20(1), 5–20 (2004)

    Article  Google Scholar 

  21. Zhu, Q., Cui, H., Cao, K., Chan, W.C.: Algorithm Fusion of Gene Expression Profiling for Diffuse Large B – Cell Lymphoma Outcome Prediction. IEEE Trans. On Information Tech. In Biomedical. 8(2), 79–88 (2004)

    Article  Google Scholar 

  22. Shedden, K., Cooper, S.: Analysis of Cell – Cycle Gene Expression in Saccharonization Cerevisiae using Microarrays and Multiple Synchronization Methods. Nucleic Acids Res. 30, 2920–2929 (2002)

    Article  Google Scholar 

  23. Pascual, A.D., et al.: Non – negative Matrix Factorization for Gene Expression and Scientific Text Analysis. In: Proceedings of 11th International Conference on Intelligent Systems for Molecular Biology, Australia (2003)

    Google Scholar 

  24. Rao, N., Shepherd, S.J.: Extracting Characteristic Patterns from Genome – Wide Expression by NMF. In: Proceedings of IEEE Internaltional Conference on Computational Systems Bioinformatics, Stanford, California, pp. 570–571 (2004)

    Google Scholar 

  25. Neumann, V.J.: Functional Operators. Annals of Mathematics No. 22, vol. II. Princeton University Press, Princeton (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rao, N., Shepherd, S.J. (2006). Clustering Gene Expression Data for Periodic Genes Based on INMF. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_45

Download citation

  • DOI: https://doi.org/10.1007/11816102_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics