Abstract
We propose an automated protocol for designing the energy landscape suitable for the description of a given set of protein sequences with known structures, by optimizing the parameters of the energy function. The parameters are optimized so that not only the global minimum-energy conformation becomes native-like, but also the conformations distinct from the native structure have higher energies than those close to the native one, for each protein sequence in the set. In order to achieve this goal, one has to sample protein conformations that are local minima of the energy function for given parameters. Then the parameters are optimized using linear approximation, and then local minimum conformations are searched with the new energy parameters. We develop an algorithm that repeats this process of parameter optimization based on linear approximation, and conformational optimization for the current parameters, ultimately leading to the optimization of the energy parameters. We test the feasibility of this algorithm by optimizing a coarse grained energy function, called the UNRES energy function, for a set of ten proteins.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)
Kim, S.-Y., Lee, J., Lee, J.: Folding of small proteins using a single continuous potential. J. Chem. Phys. 120, 8271–8276 (2004)
Lee, J., Kim, S.-Y., Lee, J.: Optimization of potential-energy parameters for folding of several proteins. J. Kor. Phys. Soc. 44, 594–598 (2004)
Mészáros, C.A.: Fast Cholesky Factorization for Interior Point Methods of Linear Programming. Computers & Mathematics with Applications 31, 49–54 (1995)
Lee, J., Scheraga, H.A., Rackovsky., S.: New optimization method for conformational energy calculations on polypeptides: Conformational space annealing. J. Comput. Chem. 18, 1222–1232 (1997)
Lee, J., Lee, I.H., Lee, J.: Unbiased Global Optimization of Lennard-Jones Clusters for N > = 201 Using the Conformational Space Annealing Method. Phys. Rev. Lett. 91, 080201-1–4 (2003)
Kim, S.-Y., Lee, S.J., Lee, J.: Conformational space annealing and an off-lattice frustrated model protein Conformational space annealing and an off-lattice frustrated model protein. J. Chem. Phys. 119, 10274–10279 (2003)
Kim, S.-Y., Lee, S.B., Lee, J.: Structure optimization by conformational space annealing in an off-lattice protein model. Phys. Rev. E 72, 011916-1–6 (2003)
Liwo, A., Oldziej, S., Pincus, M.R., Wawak, R.J., Rackovsky, S., Scheraga, H.A.: A united-residue force field for off-lattice protein-structure simulations. I: Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data. J. Comput. Chem. 18, 849–873 (1997)
Liwo, A., Pincus, M.R., Wawak, R.J., Rackovsky, S., Oldziej, S., Scheraga, H.A.: A united-residue force field for off-lattice protein-structure simulations. II: Parameterization of local interactions and determination of the weights of energy terms by Z-score optimization. J. Comput. Chem. 18, 874–887 (1997)
Lee, J., Ripoll, D.R., Czaplewski, C., Pillardy, J., Wedemeyer, W.J., Scheraga, H.A.: Optimization in Macromolecular Potential Enrgy Functions by Conformational space Annealing. J. Phys. Chem. B 105, 7291–7298 (2001)
Liwo, A., Arlukowicz, P., Czaplewski, C., Oldziej, S., Pillardy, J., Scheraga, H.A.: A method for optimizing potential-energy functions by a hierarchical design of the potential-energy landscape: Applicaiton to the UNRES for field. Proc. Natl. Acad. Sci. U.S.A. 99, 1937–1942 (2002)
Lee, J., Park, K., Lee, J.: Full Optimization of Linear Parameters of a United Residue Protein Potential. J. Phys. Chem. B 106, 11647–11657 (2002)
Lee, J., Kim, S.-.Y., Lee, J.: Design of a protein potential energy landscape by parameter optimization. J. Phys. Chem. B 108, 4525–4534 (2004)
Lee, J., Kim, S.-Y., Lee, J.: Protein structure prediction based on fragment assembly and parameter optimization. Biophys. Chem. 115, 209–214 (2005)
Lee, J., Kim, S.-Y., Lee, J.: Protein structure prediction based on fragment assembly and beta-strand pairing energy function. J. Korean Phys. Soc. 46, 707–712 (2005)
Lee, J., Liwo, A., Ripoll, D.R., Pillardy, J., Scheraga, H.A.: Calculation of Protein Conformation by Global Optimization of a potential energy function. Proteins. Suppl. 3, 204–208 (1999)
Third Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction; Asilomar Conference Center, December 13-17 (1998), http://predictioncenter.org/casp3/Casp3.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, SY., Lee, J. (2006). Double Optimization for Design of Protein Energy Function. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_60
Download citation
DOI: https://doi.org/10.1007/11816102_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37277-6
Online ISBN: 978-3-540-37282-0
eBook Packages: Computer ScienceComputer Science (R0)