Skip to main content

Efficient Solution of Bidomain Equations in Simulation of Cardiac Excitation Anisotropic Propagation

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

Abstract

Bidomain equations are used to characterize myocardial physiological activation and propagation. Their numerical solution is costly computation because of the higher temporal and spatial discretization requirements, especially in three dimensions. In most previous studies, the heart was supposed to be homogeneous isotropic medium, and thus can use the mondomain equation in stead of the bidomain equations to simulate the heart excitation propagation. Simulation of heart excitation anisotropic propagation in three-dimensional large tissue size by solving bidomain equations has not been implemented yet. In this paper, we present an efficient solution of bidomain equations in simulation of heart excitation anisotropic propagation by combining some numerical techniques such as non-standard finite difference (NSFD), domain decomposition and multigrid methods. The results show that the proposed method can successfully be used to simulate heart excitation anisotropic propagation in three-dimensional large tissue size, and it suggests that such method may provide a good basis for heart simulation research in a more physiologically way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lines, G.T., Buist, M.L., et al.: Mathematical Models and Numerical Methods for the Forward Problem in Cardiac Electrophysiology. Comput. Visual Sci. 5, 215–239 (2003)

    Article  MATH  Google Scholar 

  2. Tung, L.: A Bidomain Model for Describing Ischemic Myocardial d-c Potentials. PhD thesis, Massachusetts Institute of Technology (1978)

    Google Scholar 

  3. Huiskamp, G.J.: Simulation of Depolarization in a Membrane-equations-based Model of the Anisotropic Ventricle. IEEE Trans. Biomed. Eng. 45, 847–855 (1998)

    Article  Google Scholar 

  4. Gulrajani, R.M., Trudel, M.C., Leon, L.J.: A Membrane-Based Computer Heart Model Employing Parallel Processing. Biomedizinische Technik 46, 20–22 (2001)

    Google Scholar 

  5. Rogers, J.M., McCulloch, A.D.: A Collocation-Galerkin Finite Element Model of Cardiac Action Potential Propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)

    Article  Google Scholar 

  6. Harrild, D.M., Penland, C., Henriquez, C.S.: A Flexible Method for Simulating Cardiac Conduction in Three-Dimensional Complex Geometries. J. Electrocardiol. 33, 241–251 (2000)

    Article  Google Scholar 

  7. Scott, R., et al.: Multigrid Methods for Elliptic Problems: A Review. Mon. Wea. Rev., 943–959 (1986)

    Google Scholar 

  8. Mickens, R.E.: Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  9. Lions, P.L.: On the Schwarz alternating method III: A Variant for Nonoverlapping Subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 202–223. SIAM, Philadelphia (1990)

    Google Scholar 

  10. ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A Model for Human Ventricular Tissue. Am. J. Physiol. Heart Circ. Physiol. 286, 1573–1589 (2004)

    Article  Google Scholar 

  11. Japhet, C., et al.: The Best Interface Conditions for Domain Decomposition Methods: Absorbing Boundary Conditions (2003)

    Google Scholar 

  12. Japhet, C., Nataf, F., Roux, F.X.: Extension of a Coarse Grid Preconditioner to non-symmetric Problems. Contemporary Mathematics 218, 279–286 (1998)

    MathSciNet  Google Scholar 

  13. Rude, U.: Fully Adaptive Multigrid Methods. SIAM Journal on Numerical Analysis 30, 230–248 (1993)

    Article  MathSciNet  Google Scholar 

  14. Gulrajani, R.M.: Models of the Electrical Activity of the Heart and Computer Simulation of the Electrocardiogram. CRC Crit. Rev. Biomed. Eng. 16, 1–61 (1988)

    Google Scholar 

  15. Edward, W.H.: Three-dimensional Diffusion Tensor Microscopy of Fixed Mouse Hearts. Magnetic Resonance in Medicine 52, 453–460 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Xia, L., Hou, G. (2006). Efficient Solution of Bidomain Equations in Simulation of Cardiac Excitation Anisotropic Propagation. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_61

Download citation

  • DOI: https://doi.org/10.1007/11816102_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics