Abstract
Based on the research of optimal foraging theory (OFT), we present a novel particle swarm optimizer (PSO) to improve the performance of standard PSO (SPSO). The resulting algorithm is known as PSOOFT that makes use of two mechanisms of OFT: a reproduction strategy to enhance the ability to converge rapidly to good solutions and a patch-choice based scheme to keep a right balance of exploration and exploitation. In the simulation studies, several benchmark functions are performed, and the performance of the proposed algorithm is compared to the standard PSO (SPSO). The experimental results show that the PSOOFT prevents premature convergence to a high degree, but still has a more rapid convergence rate than SPSO.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eberchart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proceeding of the 6th International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceeding of IEEE International Conference on Neural Networks, Piscataway, pp. 1942–1948 (1995)
Eberchart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and Resources. In: Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, pp. 81–86 (2001)
Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)
Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation, Piscataway, pp. 69–73 (1998)
Chatterjee, A., Siarry, P.: Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization. Computers & Operations Research 33, 859–871 (2006)
Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability, and Convergence in A Multidimensional Complex Space. IEEE Trans. on Evolutionary Computation 6, 58–73 (2002)
Kennedy, J.: Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. In: Proceedings of the Congress on Evolutionary Computation, Piscataway, pp. 1931–1938 (1999)
Kennedy, J., Mendes, R.: Population Structure and Particle Swarm Performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, Piscataway, pp. 1671–1675 (2002)
Suganthan, P.N.: Particle Swarm Optimizer with Neighborhood Operator. In: Proceedings of the Congress on Evolutionary Computation (CEC 1999), Piscataway, pp. 1958–1962 (1999)
Hu, X., Eberhart, R.C.: Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary Computation, Honolulu, Hawaii, USA, pp. 1677–1681 (2002)
Zhang, W.J., Xie, X.F.: DEPSO: Hybrid Particle Swarm with Differential Evolution Operator. In: Proceedings of IEEE Int. Conf. on Systems, Man and Cybernetics, Washington DC, USA, pp. 3816–3821 (2003)
Juang, C.F.: A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design. IEEE Trans. Syst., Man, and Cyber., Part B: Cybernetics 34(2), 997–1006 (2004)
Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, L.M.: An Improved GA and A Novel PSO-GA-Based Hybrid Algorithm. Information Processing Letters 93, 255–261 (2005)
He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R., Paton, R.C.: A Particle Swarm Optimizer with Passive Congregation. Biosystems 78, 135–147 (2004)
Xie, X.F., Zhang, W., Yang, Z.: Hybird Particle Swarm Optimizer with Mass Extinction. In: Proceedings of the. International Conference on Communication, Circuits and Systems, Chengdu, China, pp. 1170–1173 (2002)
Niu, B., Zhu, Y.L., He, X.X.: Construction of Fuzzy Models for Dynamic Systems Using Multi-population Cooperative Particle Swarm Optimizer. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 987–1000. Springer, Heidelberg (2005)
Niu, B., Zhu, Y.L., He, X.X.: Multi-Population Cooperative Particle Swarm Optimiza-tion. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 874–883. Springer, Heidelberg (2005)
Van den Bergh, F., Engelbrecht, A.P.: A Cooperative Approach to Particle Swarm Optimization. IEEE Trans. on Evol. Comput. 8(3), 225–239 (2004)
Blackwell, T., Branke, J.: Multi-Swarm Optimization in Dynamic Environments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)
Stephens, D.W., Krebs, J.R.: Foraging Theory. Princeton University Press, Princeton New Jersey (1986)
Giraldeau, L.-A., Caraco., T.: Social Foraging Theory. Princeton University Press, Princeton, New Jersey (2000)
Choi, C., Lee, J.: Chaotic Local Search Algorithm. Artificial Life and Robotics 2(1), 41–47 (1998)
Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings of the 1998 IEEE Congress on Evolutionary Computation, Piscataway, pp. 84–89 (1998)
Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, Piscataway, pp. 1945–1950 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Niu, B., Zhu, Y., Hu, K., Li, S., He, X. (2006). A Novel Particle Swarm Optimizer Using Optimal Foraging Theory. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_7
Download citation
DOI: https://doi.org/10.1007/11816102_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37277-6
Online ISBN: 978-3-540-37282-0
eBook Packages: Computer ScienceComputer Science (R0)