Skip to main content

Nonequilibrium Model for Yeast Cell Cycle

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

Abstract

In the living cells, molecules including proteins, DNAs, RNAs and so on, with interactions between them cooperate as networks that govern various cellular functions. In this paper, a stochastic model with trigger mechanism is proposed based on what are known about the genes and proteins controlling the cell cycle of budding yeast. With respect to the biological observations, it looks more natural and understandable than deterministic dynamical model and our former stochastic model. Our model vividly describes that the protein interaction network goes through the biological pathway and forms an endless loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zweiger, G.: Knowledge Discovery in Gene-Expression-Microarray Data: Mining the Information Output of the Genome. Trends Biotechnol. 17(11), 429–436 (1999)

    Article  Google Scholar 

  2. Ito, T., Chiba, T., Ozawa, R., et al.: A Comprehensive Two-hybrid Analysis to Explore the Yeast Protein Interactome. Proc. Natl. Acad. Sci. USA 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  3. Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., et al.: Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle. Mol. Biol. Cell 11(1), 369–391 (2000)

    Google Scholar 

  4. Cross, F.R., Archambault, V., Miller, M., et al.: Testing a Mathematical Model of the Yeast Cell Cycle. Mol. Biol. Cell 13(1), 52–70 (2002)

    Article  Google Scholar 

  5. Li, F., Long, T., Lu, Y., et al.: The Yeast Cell-Cycle Network is Robustly Designed. Proc. Natl. Acad. Sci. USA 101(14), 4781–4786 (2004)

    Article  Google Scholar 

  6. Chen, H.C., Lee, H.C., Lin, T.Y., et al.: Quantitative Characterization of the Transcriptional Regulatory Network in the Yeast Cell Cycle. Bioinformatics 20(12), 1914–1927 (2004)

    Article  Google Scholar 

  7. Chen, K.C., Calzone, L., Csikasz-Nagy, A., et al.: Integrative Analysis of Cell Cycle Control in Budding Yeast. Mol. Biol. Cell 15(8), 3841–3862 (2004)

    Article  Google Scholar 

  8. Cross, F.R., Schroeder, L., Kruse, M., et al.: Quantitative Characterization of a Mitotic Cyclin Threshold Regulating Exit from Mitosis. Mol. Biol. Cell 16(5), 2129–2138 (2005)

    Article  Google Scholar 

  9. Futcher, B.: Transcriptional Regulatory Networks and the Yeast Cell Cycle. Curr. Opin. Cell Biol. 14(6), 676–683 (2002)

    Article  Google Scholar 

  10. Murray, A.W.: Recycling the Cell Cycle: Cyclins Revisited. Cell 116(2), 221–234 (2004)

    Article  Google Scholar 

  11. Ingolia, N.T., Murray, A.W.: The Ups and Downs of Modeling the Cell Cycle. Curr. Biol. 14(18), R771–R777 (2004)

    Article  Google Scholar 

  12. Tyers, M.: Cell Cycle Goes Global. Curr. Opin. Cell Biol. 16(6), 602–613 (2004)

    Article  Google Scholar 

  13. Zhang, Y., Qian, M., Ouyang, Q., et al.: Stochastic Model of Yeast Cell Cycle Netwok (in appear)

    Google Scholar 

  14. Ao, P.: Potential in Stochastic Differential Equations: Novel Construction. Journal of Physics A: Mathematical and General (3), L25–L30 (2004)

    Google Scholar 

  15. Zhu, X.M., Yin, L., Hood, L., et al.: Calculating Biological Behaviors of Epigenetic States in the Phage λ Life Cycle. Funct. Integr. Genomics 4(3), 188–195 (2004)

    Article  Google Scholar 

  16. Albeverio, S., Feng, J., Qian, M.: Role of Noises in Neural Networks. Physical Review. E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 52(6), 6593–6606 (1995)

    MathSciNet  Google Scholar 

  17. Jiang, D., Qian, M.: Mathematical Theory of Nonequilibrium Steady States. Springer, Heidelberg (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Yu, H., Deng, M., Qian, M. (2006). Nonequilibrium Model for Yeast Cell Cycle. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_84

Download citation

  • DOI: https://doi.org/10.1007/11816102_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics