Abstract
Swarm-diversity is an important factor influencing the global convergence of particle swarm optimization (PSO). In order to overcome the premature convergence, the paper introduced a negative feedback mechanism into particle swarm optimization and developed an adaptive PSO. The improved method takes advantage of the swarm-diversity to control the tuning of the inertia weight (PSO-DCIW), which in turn can adjust the swarm-diversity adaptively and contribute to a successful global search. The proposed PSO-DCIW was applied to some well-known benchmarks and compared with the other notable improved methods for PSO. The relative experimental results show PSO-DCIW is a robust global optimization method for the complex multimodal functions, which can improve the performance of the standard PSO and alleviate the premature convergence validly.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. IEEE Conference on Neural Networks, vol. 11, pp. 1942–1948. IEEE Service Center, Perth, Australia (1995)
Bergh, F.V.D., Engelbrecht, A.: Particle Swarm Weight Initialization in Multi-layer Perception Artificial Neural Networks. In: Development and Practice of Artificial Intelligence Techniques, Durban, South Africa, pp. 41–45 (1999)
Bergh, F.V.D., Engelbrecht, A.P.: Cooperative Learning in Neural Networks using Particle Swarm Optimizers. South African Computer Journal 26(11), 84–90 (2000)
Clerc, M., Kennedy, J.: The Particle Swarm–Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)
Fukuyama, Y., Yoshida, H.: A Particle Swarm Optimization for Reactive Power and Voltage Control in Electric Power Systems. In: Proc. Congress on Evolutionary Computation, pp. 87–93. IEEE Service Center, Seoul, Korea. Piscataway (2001)
Zeng, J.C., Jie, J., Cui, Z.H.: Particle Swarm Optimization. Science Press, Beijing (2004)
Suganthan, P.N.: Particle Swarm Optimizer with Neighborhood Operator. In: Proc. Congress on Evolutionary Computation, Washington D.C, USA, July, pp. 1958–1961. IEEE Service Center, Piscataway (1999)
Li, X.D.: Adaptively Choosing Neighborhood Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 105–116 (2004)
Lovbjerg, M., Rasmussen, T.K., Krink, T.: Hybrid Particle Swarm Optimiser with Breeding and Subpopulations. In: Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, USA (2001)
Jacques, R., Jakob, S.V.: A Diversity-Guided Particle Swarm Optimizer –the ARPSO, http://citeseer.nj.nec.com/riget02diversityguided.html
Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proc. Conference on Evolutionary Computation, pp. 69–73. IEEE Press, Piscataway (1998)
Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proc. Congress on Evolutionary Computation, pp. 1945–1950. IEEE Service Center, Piscataway (1999)
Eberhart, R.C., Shi, Y.H.: Tracking and Optimizing Dynamic Systems with Particle Swarms. In: Proc. Congress on Evolutionary Computation, pp. 94–97. IEEE service Center, Seoul, Kores (2001)
Shi, Y.H., Eberhart, R.C.: Fuzzy Adaptive Particle Swarm Optimization. In: Proc. Congress on Evolutionary Computation, pp. 101–106. IEEE service Center, Seoul, Korea (2001)
Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–255 (2004)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence From Natural to Artificial Systems, pp. 1–22. Oxford University Press Inc., Oxford (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jie, J., Zeng, J., Han, C. (2006). Adaptive Particle Swarm Optimization with Feedback Control of Diversity. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_9
Download citation
DOI: https://doi.org/10.1007/11816102_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37277-6
Online ISBN: 978-3-540-37282-0
eBook Packages: Computer ScienceComputer Science (R0)