Skip to main content

A Cooperative Evolutionary System for Designing Neural Networks

  • Conference paper
Intelligent Computing (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4113))

Included in the following conference series:

  • 1708 Accesses

Abstract

A novel cooperative evolutionary system, i.e., CGPNN, for automatic design artificial neural networks (ANN’s) is presented where ANN’s structure and parameters are tuned simultaneously. The algorithms used in CGPNN combine genetic algorithm (GA) and particle swarm optimization (PSO) on the basis of a direct encoding scheme. In CGPNN, standard (real-coded) PSO is employed to training ANN’s free parameters (weights and bias) and binary-coded GA is used to find optimal ANN’s structure. In the simulation part, CGPNN is applied to the predication of tool life. The experimental results show that CGPNN has good accuracy and generalization ability in comparison with other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by ErrorPropagation. The MIT Press, Cambridge (1986)

    Google Scholar 

  2. Rumelhar, D.E., Hinton, G.E., Williams, R.J.: Learning Representations by Back-Propagating Errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  3. Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., Alkon, D.L.: Accelerating the Convergence of the Back-Propagation Method. Biological Cybernetics 59, 257–263 (1988)

    Article  Google Scholar 

  4. Battit, R.: First and Second Order Methods of Learning: Between the Steepest Descent and Newton’s Method. Neural Network 4, 4141–4166 (1991)

    Google Scholar 

  5. Stone, J.V., Lister, R.: On the Relative Time Complexities of Standard and Conjugate Gradient Back Propagation. In: Proceedings of IEEE World Congress on Computational Intelligence, pp. 84–87 (1994)

    Google Scholar 

  6. Boray, G.K., Srinath, M.D.: Conjugate Gradient Techniques for Adaptive Filtering. IEEE Transactions on Circuits and Systems 39(1), 1–10 (1992)

    Google Scholar 

  7. Hagan, M.T., Menhaj, M.B.: Training Feed Forward Networks with the Marquardt Algorithm. IEEE Transactions on Neural Networks 5, 989–993 (1994)

    Article  Google Scholar 

  8. Gallant, S.: Neural-Network Learning and Expert Systems. MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  9. Reed, R.: Pruning algorithms—A Survey. IEEE Transactions on Neural Networks 4, 740–747 (1993)

    Article  Google Scholar 

  10. Angeline, P., Saunders, G., Pollack, J.: An Evolutionary Algorithm That Constructs Recurrent Neural Networks. IEEE Trans. Neural Networks 5, 54–65 (1994)

    Article  Google Scholar 

  11. Leung, F.H.F., Lam, H.K., Ling, S.H., Tam, P.K.S.: Tuning of the structure and parameters of neural network using an improved genetic algorithm. IEEE Trans. Neural Networks 14(1), 79–88 (2003)

    Article  Google Scholar 

  12. Miller, G.P., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. In: Proceedings of the 3rd Int. Conf. Genetic Algorithms Applications, San Mateo, CA, pp. 379–384 (1989)

    Google Scholar 

  13. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks 8, 694–713 (1997)

    Article  Google Scholar 

  14. Eberchart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceeding of the 6th international symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceeding of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  16. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann Arbor (1975)

    Google Scholar 

  17. Jalali, S.A., Kolarik, W.J.: Tool life and machinability models for drilling steels. International Journal of Machine Tools& Manufacturing 31, 273–282 (1991)

    Article  Google Scholar 

  18. Armarego, E.J.A., Brown, R.H.: The Machining of Metals. Prentice-Hall Inc., Englewood Cliffs (1969)

    Google Scholar 

  19. Liu, Q., Altintas, Y.: On-line Monitoring of Flank Wear in Turning with Multi-layered Feed-forward Neural Network. International Journal of Machine Tools& Manufacturing 39, 1945–1959 (1999)

    Article  Google Scholar 

  20. Lee, B.Y., Liu, H.S., Tarng, Y.S.: Abductive Network for Predicting Tool Life in Drilling. IEEE Transactions on Industry Application 35, 190–195 (1999)

    Article  Google Scholar 

  21. Natarajan, U., Saravanan, R., Periasamy, V.M.: Application of particle swarm optimization in artificial neural network for the prediction of tool life. International Journal of Advanced Manufacturing Technology 28, 1084–1088 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niu, B., Zhu, Y., Hu, K., Li, S., He, X. (2006). A Cooperative Evolutionary System for Designing Neural Networks. In: Huang, DS., Li, K., Irwin, G.W. (eds) Intelligent Computing. ICIC 2006. Lecture Notes in Computer Science, vol 4113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816157_2

Download citation

  • DOI: https://doi.org/10.1007/11816157_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37271-4

  • Online ISBN: 978-3-540-37273-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics