Skip to main content

Exponential Stability of Interval Neural Networks with Variable Delays

  • Conference paper
Intelligent Computing (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4113))

Included in the following conference series:

Abstract

In this paper, the conditions ensuring existence, uniqueness, and global exponential stability of the equilibrium point of interval neural networks with variable delays are studied. Applying idea of vector Liapunov function, the sufficient conditions for global exponential stability of interval neural networks are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circ. Syst. 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Forti, M., Tesi, A.: New Conditions for Global Stability of Neural Networks with Application to Linear and Quadratic Programming Problems. IEEE Trans. Circ. Syst. I 42, 354–366 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Van Den Driessche, P., Zou, X.: Global Attractivity in Delayed Hopfield Neural Networks Models. SIAM J. Appl. Math. 58, 1878–1890 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arik, S., Tavanoglu, V.: On the Global Asymptotic Stability of Delayed Cellular Neural Networks. IEEE Trans. Circ. Syst. I 47, 571–574 (2000)

    Article  MATH  Google Scholar 

  5. Zhang, J., Jin, X.: Global Stability Analysis in Delayed Hopfield Neural Networks Models. Neural Networks 13, 745–753 (2000)

    Article  Google Scholar 

  6. Zhang, J.: Absolutely Exponential Stability in Delayed Cellular Neural Networks. Int. J. Circ. Theor. Appl. 30, 395–409 (2002)

    Article  MATH  Google Scholar 

  7. Zhang, J.: Globally Exponential Stability of Neural Networks with Variable Delays. IEEE Trans. Circ. Syst. 50, 288–291 (2003)

    Google Scholar 

  8. Chen, T.: Global Exponential Stability of Delayed Hopfield Neural Networks. Neural Networks 14, 977–980 (2001)

    Article  Google Scholar 

  9. Liao, X., Wong, K.W., Wu, Z., Chen, G.: Novel Robust Stability Criteria for Interval Delayed Hopfield Neural Networks. IEEE Trans. Circ. Syst. I 48, 1355–1359 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Siljak, D.D.: Large-Scale Dynamic Systems-Stability and Structure. Elsevier, New York (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Ren, D., Zhang, W. (2006). Exponential Stability of Interval Neural Networks with Variable Delays. In: Huang, DS., Li, K., Irwin, G.W. (eds) Intelligent Computing. ICIC 2006. Lecture Notes in Computer Science, vol 4113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816157_40

Download citation

  • DOI: https://doi.org/10.1007/11816157_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37271-4

  • Online ISBN: 978-3-540-37273-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics