Abstract
The similarity measure is derived using fuzzy entropy and distance measure. By the relations of fuzzy entropy, distance measure, and similarity measure, we first obtain the fuzzy entropy. And with both fuzzy entropy and distance measure, similarity measure is obtained. We verify that the proposed measure become the similarity measure.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, SH., Kim, JM., Choi, YK. (2006). Similarity Measure Construction Using Fuzzy Entropy and Distance Measure. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_120
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_120
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)