Skip to main content

Solving Multi-period Financial Planning Problem Via Quantum-Behaved Particle Swarm Algorithm

  • Conference paper
  • First Online:
Computational Intelligence (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4114))

Included in the following conference series:

Abstract

A multistage stochastic financial optimization manages portfolio in constantly changing financial markets by periodically rebalancing the asset portfolio to achieve return maximization and/or risk minimization. In this paper, we present a decision-making process that uses our proposed Quantum-behaved Particle Swarm Optimization (QPSO) Algorithm to solve multi-stage portfolio optimization problem. The objective function is classical return-variance function. The performance of our algorithm is demonstrated by optimizing the allocation of cash and various stocks in S&P 100 index. Experiments are conducted to compare performance of the portfolios optimized by different objective functions with Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA) in terms of efficient frontiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, J., Xu, W., Fang, W. (2006). Solving Multi-period Financial Planning Problem Via Quantum-Behaved Particle Swarm Algorithm. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_143

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37275-2_143

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37274-5

  • Online ISBN: 978-3-540-37275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics