Abstract
A multistage stochastic financial optimization manages portfolio in constantly changing financial markets by periodically rebalancing the asset portfolio to achieve return maximization and/or risk minimization. In this paper, we present a decision-making process that uses our proposed Quantum-behaved Particle Swarm Optimization (QPSO) Algorithm to solve multi-stage portfolio optimization problem. The objective function is classical return-variance function. The performance of our algorithm is demonstrated by optimizing the allocation of cash and various stocks in S&P 100 index. Experiments are conducted to compare performance of the portfolios optimized by different objective functions with Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA) in terms of efficient frontiers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sun, J., Xu, W., Fang, W. (2006). Solving Multi-period Financial Planning Problem Via Quantum-Behaved Particle Swarm Algorithm. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_143
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_143
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)