Abstract
Utterance verification is a process, in which a spoken utterance is verified against the given keyword. This process is used to make a decision on acceptance or rejection. In this paper, we propose a new approach to the utterance verification, using a boosting classifier with ten confidence measures. This classifier combines a set of ’weak’ learners into a ’strong’ one. The experimental results present that it can remarkably improve the verification performance. Compared with a single confidence measure, the equal error rate is reduced by up to 23%. The results also show that the boosting classifier is better than the SVM and MLP classifiers, in term of the equal error rate.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dong, C., Dong, Y., Huang, D., Guo, J., Wang, H. (2006). A Boosting Approach for Utterance Verification. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_144
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_144
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)