Abstract
Collaborative filtering systems based on a matrix are effective in recommending items to users. However, these systems suffer from the fact that they decrease the accuracy of recommendations, recognized specifically as the sparsity and the first rater problems. This paper proposes the constructing full matrix through Naïve Bayesian, to solve the problems of collaborative filtering. The proposed approach uses Naïve Bayesian, in order to convert the sparse ratings matrix into a full ratings matrix; subsequently using collaborative filtering, to provide recommendations. The proposed method is evaluated in the EachMovie dataset and the approach is demonstrated to perform better than both collaborative filtering and content-based filtering.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jung, KY., Hwang, HJ., Kang, UG. (2006). Constructing Full Matrix Through Naïve Bayesian for Collaborative Filtering. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_150
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_150
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)