Skip to main content

A Simulation-Based Process Model Learning Approach for Dynamic Enterprise Process Optimization

  • Conference paper
  • First Online:
Computational Intelligence (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4114))

Included in the following conference series:

Abstract

Dynamic enterprises process optimization (DEPO) is a multi-parametric and multi-objective system optimization problem. This paper proposes a simulation-based process model learning approach for dynamic enterprise process optimization. Some concepts such as Evolving_region, Evolving_Potential, Degenerate_region and Degenerate_limit are proposed to extend the concept of Tabu area. Tabu area extension and connection is successfully presented for realizing rapidly the domain reduction of a candidate set and speeding up global optimization. A distributed parallel optimization environment has been implemented using intelligent agents to validate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, W. (2006). A Simulation-Based Process Model Learning Approach for Dynamic Enterprise Process Optimization. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37275-2_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37274-5

  • Online ISBN: 978-3-540-37275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics