Skip to main content

Applying Latent Dirichlet Allocation to Automatic Essay Grading

  • Conference paper
Advances in Natural Language Processing (FinTAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4139))

Included in the following conference series:

Abstract

We report experiments on automatic essay grading using Latent Dirichlet Allocation (LDA). LDA is a “bag-of-words” type of language modeling and dimension reduction method, reported to outperform other related methods, Latent Semantic Analysis (LSA) and Probabilistic Latent Semantic Analysis (PLSA) in Information Retrieval (IR) domain. We introduce LDA in detail and compare its strengths and weaknesses to LSA and PLSA. We also compare empirically the performance of LDA to LSA and PLSA. The experiments were run with three essay sets consisting in total of 283 essays from different domains. On contrary to the findings in IR, LDA achieved slightly worse results compared to LSA and PLSA in the experiments. We state the reasons for LSA and PLSA outperforming LDA and indicate further research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Page, E.B.: The Imminence of Grading Essays by Computer. Phi Delta Kappan 47, 238–243 (1966)

    Google Scholar 

  2. Burstein, J.: The E-Rater Scoring Engine: Automated Essay Scoring with Natural Language Processing. In: Shermis, M.D., Burstein, J. (eds.) Automated Essay Scoring: a Cross-Disciplinary Perspective, pp. 113–122. Lawrence Erlbaum Associates, Hillsdale (2003)

    Google Scholar 

  3. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to Latent Semantic Analysis. Discourse Processes 25, 259–284 (1998)

    Article  Google Scholar 

  4. Hofmann, T.: Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning Journal 42, 177–196 (2000)

    Article  Google Scholar 

  5. Landauer, T.K., Laham, D., Foltz, P.: Automatic Essay Assessment. Assessment in Education 10, 295–308 (2003)

    Article  Google Scholar 

  6. Kakkonen, T., Myller, N., Sutinen, E., Timonen, J.: Automatic Essay Grading with Probabilistic Latent Semantic Analysis. In: Proceedings of the ACL 2005 Second Workshop on Building Educational Applications Using Natural Language Processing, Ann Arbor, Michigan, USA, pp. 29–36 (2005)

    Google Scholar 

  7. Lemaire, B., Dessus, P.: A System to Assess the Semantic Content of Student Essays. Journal of Educational Computing Research 24, 305–320 (2001)

    Article  Google Scholar 

  8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    Article  MATH  Google Scholar 

  9. Kakkonen, T., Sutinen, E.: Automatic Assessment of the Content of Essays Based on Course Materials. In: Proceedings of International Conference on Information Technology: Research and Education, London, UK, pp. 126–130 (2004)

    Google Scholar 

  10. Lingsoft: Lingsoft Ltd. (2005) (accessed 1.3.2006), WWW-page: http://www.lingsoft.fi

  11. Kakkonen, T., Sutinen, E., Timonen, J.: Applying Validation Methods for Noise Reduction in LSA-based Essay Grading. WSEAS Transactions on Information Science and Applications 2, 1334–1342 (2005)

    Google Scholar 

  12. Minka, T., Lafferty, J.: Expectation-propagation for the generative aspect model. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 352–359 (2002)

    Google Scholar 

  13. Girolami, M., Kabán, A.: On an Equivalence between PLSI and LDA. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 433–434. ACM Press, New York (2003)

    Google Scholar 

  14. Globerson, A., Tishby, N.: Sufficient Dimensionality Reduction. Journal of Machine Learning Research 3, 1307–1331 (2003)

    Article  MATH  Google Scholar 

  15. Brants, T.: Test Data Likelihood for PLSA Models. Information Retrieval 8, 181–196 (2005)

    Article  Google Scholar 

  16. Larkey, L.: Automatic Essay Grading Using Text Categorization Techniques. In: Proceedings of 21st Annual International Conference on Research and Development in Information Retrieval, pp. 90–95 (1998)

    Google Scholar 

  17. Landauer, T., Rehder, B., Schreiner, M.E.: How Well Can Passage Meaning Be Derived without Using Word Order? A Comparison of Latent Semantic Analysis and Humans. In: Proceedings of the 19th Annual Meeting of the Cognitive Science Society (1997)

    Google Scholar 

  18. Foltz, P.W., Gilliam, S., Kendall, S.: Supporting Content-based Feedback in Online Writing Evaluation with LSA. Interactive Learning Environments 8, 111–129 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kakkonen, T., Myller, N., Sutinen, E. (2006). Applying Latent Dirichlet Allocation to Automatic Essay Grading. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds) Advances in Natural Language Processing. FinTAL 2006. Lecture Notes in Computer Science(), vol 4139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816508_13

Download citation

  • DOI: https://doi.org/10.1007/11816508_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37334-6

  • Online ISBN: 978-3-540-37336-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics