Skip to main content

A Complete Axiomatisation of Branching Bisimulation for Probabilistic Systems with an Application in Protocol Verification

  • Conference paper
CONCUR 2006 – Concurrency Theory (CONCUR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4137))

Included in the following conference series:

  • 647 Accesses

Abstract

We consider abstraction in probabilistic process algebra. The process algebra can be employed for specifying processes that exhibit both probabilistic and non-deterministic choices in their behaviour. We give a set of axioms that completely axiomatises the branching bisimulation for the strictly alternating probabilistic graph model. In addition, several recursive verification rules are identified, allowing us to remove redundant internal activity.

Using the axioms and the verification rules, we have successfully conducted a verification of the Concurrent Alternating Bit Protocol. This is a simple communication protocol, slightly more ‘sophisticated’ than the well-known Alternating Bit Protocol. As channels are lossy, sending continuous streams of data through the channels is a method to overcome this possible loss of data. This instigates a considerable level of parallelism (parallel activities) and as such requires more complex techniques for proving the protocol correct. Using our process algebra we show that after abstraction of internal activity, the protocol behaves as a buffer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andova, S., Baeten, J.C.M., Willemse, T.A.C.: Complete axiomatisation of probabilistic branching bisimulation, CSR (to appear, 2006), preliminary version available at, http://www.cs.ru.nl/timw/completeness.pdf

  2. Andova, S., Willemse, T.A.C.: Branching bisimulation for probabilistic systems: characteristics and decidability. In: Baeten, J.C.M., Corradini, F. (eds.) Theor. Comp. Sci., vol. 356(3), pp. 325–355 (2006); Also appeared as a CSR, University of Twente, TR-CTIT-05-08, 2005

    Google Scholar 

  3. Andova, S., Baeten, J.C.M.: Abstraction in Probabilistic Process Algebra. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 204–219. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Andova, S., Baeten, J.C.M.: Alternative composition does not imply non-determinism. Bulletin of the European Association for Theoretical Computer Science 76, 125–127 (2002)

    Google Scholar 

  5. Andova, S.: Probabilistic process algebra, Ph.D. thesis, Eindhoven University of Technology (2002)

    Google Scholar 

  6. Andova, S.: Process Algebra with Probabilistic Choice. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 111–129. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theor. Comp. Sci. 51, 129–176 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press, Cambrodge (1990)

    Google Scholar 

  9. Baier, C.: On algorithmic verification methods for probabilistic systems, Habilitation thesis, University of Mannheim (1998)

    Google Scholar 

  10. Bandini, E., Segala, R.: Axiomatizations for Probabilistic Bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Deng, Y., Palamidessi, C.: Axiomatizations for Probabilistic Finite-State Behaviors. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 110–124. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of ACM 43(3), 555–600 (1996)

    Article  MATH  Google Scholar 

  13. Hansson, H.: Time and probability in formal design of distributed systems, Ph.D. thesis, DoCS 91/27, University of Uppsala (1991)

    Google Scholar 

  14. Koymans, C.P.J., Mulder, J.C.: A modular approach to protocol verification using process algebra. In: Baeten, J.C.M. (ed.) Applications of Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 17, pp. 261–306. Cambridge University Press, Cambridge (1990)

    Chapter  Google Scholar 

  15. Milner, R.: Communication and concurrency. International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  16. Philippou, A., Lee, I., Sokolsky, O.: Weak Bisimulation for Probabilistic Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Stoelinga, M.: Alea jacta est: Verification of probabilistic, real-time and parametric systems, Ph.D. thesis, Katholieke Universiteit Nijmegen, The Netherlands (2002)

    Google Scholar 

  19. van Wamel, J.: Process Algebra with Language Matching. Theor. Comput. Sci. 177(2), 425–458 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andova, S., Baeten, J.C.M., Willemse, T.A.C. (2006). A Complete Axiomatisation of Branching Bisimulation for Probabilistic Systems with an Application in Protocol Verification. In: Baier, C., Hermanns, H. (eds) CONCUR 2006 – Concurrency Theory. CONCUR 2006. Lecture Notes in Computer Science, vol 4137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11817949_22

Download citation

  • DOI: https://doi.org/10.1007/11817949_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37376-6

  • Online ISBN: 978-3-540-37377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics