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Abstract. Propositional temporal logic is not suitable for expressing properties
on the evolution of dynamically allocated entities over time. In particular, it is not
possible to trace such entities through computation steps, since this requires the
ability to freely mix quantification and temporal operators.

In this paper we study Quantified Computation Tree Logic (QCTL), which
extends the well-known propositional computation tree logic, PCTL, with first
and (monadic) second order quantification. The semantics of QCTL is expressed
on algebra automata, which are automata enriched with abstract algebras at each
state, and with reallocations at each transition that express an injective renam-
ing of the algebra elements from one state to the next. The reallocations enable
minimization of the automata modulo bisimilarity, essentially through symmetry
reduction. Our main result is to show that each combination of a QCTL for-
mula and a finite algebra automaton can be transformed to an equivalent PCTL
formula over an ordinary Kripke structure, while maintaining the symmetry re-
duction. The transformation is structure-preserving on the formulae. This gives
rise to a method to lift any model checking technique for PCTL to QCTL.

1 Introduction

Ever since its conception in the 80’s, model checking has been based on modal exten-
sions of propositional logic. That is to say, the properties that can be formulated and
checked have as their smallest building blocks a finite set of atomic propositions, each
of which is satisfied by a subset of the states of the model (Kripke structure, transition
system, automaton) being checked. This means that, for the purpose of model checking,
the information in each of the states is abstracted to the subset of propositions satisfied
there.

Since the propositions themselves can be defined in any manner whatsoever (as long
as only finitely many of them are considered at the same time) this setup can be used
also in settings where the states have rich associated domains — for instance, the state
snapshots of a software system. A good example of this principle arises in software
models with a fixed set of variables over a finite set of values, such as can be written in,
for instance, Spin’s input language Promela [15]: there the states are essentially valu-
ations of those variables, and typical propositions are (in)equations over the variables.
As a more sophisticated example, one can define propositions that are actually closed
first-order formulae interpreted over the states; this allows the expression of existential
and universal properties even in a setting where the size of the state domains (such as
the number of variables or entities) is not fixed. As an example, one may think of a
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property like “the buffer can always eventually become empty” interpreted in a model
where values are added to and removed from cells of a buffer of variable (bounded)
size; here the proposition “the buffer is empty” actually corresponds to the first-order
property “no cell in the buffer contains a value”.

(Note that a property such as this one is independent of the size of the buffer; this is
why quantification is essential to be able to formulate it. When the model is fixed, so that
the maximum size of the state domains is known, any closed first-order state formula
can be expanded to an equivalent quantifier-free one by flattening the quantifiers to a
finite disjunction or conjunction ranging over all existing values.)

This setup can also be explained in terms of a two-layered logic: at the bottom we
have a language to express those properties of individual states that are considered in-
teresting for verification purposes; on top of that we define a modal logic, in which the
properties of the lower level are treated as propositions. There are, however, system-
level properties that are relevant to the correctness of a system and yet cannot be ex-
pressed in this two-layered setup. Typically, these are properties where the behaviour of
individual entities over time is at issue. An example that will be used throughout this pa-
per is “values are removed from the buffer in the same order they are inserted” (or “the
buffer has FIFO-behaviour”). Here it is important not only that a buffer cell contains
some object, but also that the same object was (or was not) contained by some buffer
cell in the next or previous state. In order to express this, we need to track the identity of
the object over multiple states, which can only be done through quantification outside
the modal operators; hence, the two-layer hierarchy no longer suffices.

From this observation, it follows that there is interest in logics in which quantifica-
tion and modalities can be freely mixed — a point we have argued before in [11, 10, 19],
and has been made independently by Yahav et al. in [21]. In contrast to the latter, we
pursue a model checking approach. In our work cited above this was limited to multisets
resp. singly-linked lists, which however were unbounded in size; in the current paper
we study arbitrary algebraic structures (like [21]), albeit (in our case) for finite state,
or in other words, bounded models only. As modal logic we take Quantified Computa-
tion Tree Logic (QCTL), which adds first and (monadic) second order quantification to
Propositional Computation Tree Logic (PCTL, see [6]). The contribution of this paper
is to show that:

1. Using second order quantification, QCTL formulae can not only be used to track
entities over time, but also to express (de)allocation schedules, such as the fact that
entities are deleted in their order of creation.

2. Any combination of a property in QCTL together with a finite model to be checked
(in which the size of the state domains is variable) can be transformed to a com-
bination of an expanded, quantifier-free formula and an expanded model, such that
the model checking question has the same answer in both combinations.

3. This can be made to work on models that are minimized up to bisimilarity (using
reallocations between states) without losing the reduction due to that minimization.

Regarding the latter point: for our models (which we call algebra automata since
the state domains are algebras of some fixed signature) we use an idea from history-
dependent automata (Montanari and Pistore [16, 17]): each transition carries a reallo-
cation function from the entities in its source to thoses in its target state. This allows
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states with symmetrical domains to be merged, and thus can help to keep models small:
[17] shows that history-dependent automata can be minimized with respect to bisimi-
larity. Depending on the amount of symmetry in the system, minimization can result in
a logarithmically smaller model in terms of the number of states and transitions, while
keeping the algebra sizes constant — at the price of the reallocations themselves.

In the terminology of quantified modal logic (see, e.g., Fitting [12, 13], Basin et
al. [2]), our models have variable domains and non-rigid designators, and our trans-
formation has a strong analogy to Skolemization — the introduction of a new constant
(non-rigidly designating) for every quantified logical variable. The idea is essentially
that of case splitting for existential quantifiers, modified to take (de)allocation and re-
allocations into account and to retain the state space reduction due to minimization.

The transformation theorem of this paper implies that existing tools and techniques
for PCTL model checking (see, e.g., [7]) can be used directly for QCTL, once the prop-
erty and model are both given. The complexity of the transformation of the automaton
depends on the maximal nesting depth of quantifiers in the formula, d, and the max-
imum size of the algebras in the individual states, a: the transformation results in a
worst-case blow-up exponential in d and a, or just linear in a if the formula contains
first-order quantification only. On the formula the transformation results in blow-up lin-
ear in the number of temporal operators and quantifiers. Note that this complexity is no
better than was to be expected by a simple combinatorial argument based on the bound-
edness of the model, but is still interesting in the light of the aforementioned potential
for symmetry reduction.

Sect. 2 defines and discusses the logic, Sect. 3 defines its semantics and Sect. 4
defines the transformation and proves the main result. Sect. 5 discusses some improve-
ments, including the addition of (Büchi) fairness. We draw conclusions and discuss
related work in Sect. 6. For space reasons, most proofs had to be omitted; however, see
http://www.cs.utwente.nl/˜rensink/papers/concur2006-full.pdf.

2 The Logic

The structures that we will model and reason about in this paper are built on a set of
names Name. The same names are used for functions and predicates in the model and
for logical variables. Names will be interpreted by strict partial functions Entα⊥ ⇀ Entτ⊥
for some set of entities Ent (where ⊥ /∈ Ent stands for undefinedness and Ent⊥ = Ent∪
{⊥}), with α ∈ Nat (the arity) and τ ∈ {0, 1} (the type). In fact for the sake of con-
ciseness we assume that every name n ∈ Name has a fixed arity αn and type τn, which
are respected by the interpretation. We use Namei,j with i ∈ Nat and j = 0, 1 for the
subset of names with arity i and type j. The entities, which from the point of the formal-
ism are uninterpreted, can in practice be made to stand for arbitrary data and reference
values; for instance, in software models they can stand for stack frames or heap objects.

The intuition is that if τn = 0 then n denotes a partial function to a singleton set
(since Ent0 = {ε} consists of the empty sequence only), which in turn corresponds
to the characteristic function for a predicate with arity αn (or a monadic second-order
variable if used in the logic); the predicate is taken to hold in a given state if and only
its value is defined. If, moreover, αn = 0 then n corresponds to a proposition. On the
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other hand, if τn = 1 then n is a (partially defined) operator with arity αn; If, moreover,
αn = 0 then n corresponds to an ordinary constant (in the model) or first-order variable
(in the logic).

As meta-variables over Name, we typically use p to range over predicates (including
propositions), f for functions, and c for constants; for the general case we use x, y.

We now introduce the logic studied in this paper, QCTL. The syntax is given by
the following grammar, which defines terms (meta-variables t, u) and formulae (meta-
variables φ, ψ):

t ::= f(u)
φ ::= t | t ≡ u | ∃xφ | φ ∧ ψ | ¬φ | EX φ | E(φ U ψ) | A(φ U ψ)

In our examples, we assume that negation binds strongest, and quantification as well as
EX bind weakest.

– A term t = f(u) stands for the application of f ∈ Name to a vector of sub-terms u,
with |u| = αf . If αf = 0 then u = ε, in which case we usually omit the brackets
and write only f .
The notion of type can be extended from names to terms in a natural way, by spec-
ifying τt = τf if t = f(u); t is well-typed if for all ui ∈ u, τui = 1 and ui is
again well-typed. Since functions are generally partial, terms may evaluate to ⊥.

– A formula φ = t expresses that (the interpretation of) t is defined; i.e., t does not
evaluate to ⊥. (Note that, due to the fact that our interpretations can be partial, we
are not in classical logic.) In particular, if τt = 0 (meaning that t = p(u) for some
predicate p) then this is the usual interpretation of predicates. On the other hand,
¬t with τt = 1 denotes that the entity denoted by t no longer exists — presumably
because it has been deallocatied in a transition leading up to the current state.

– φ = t≡u expresses equality of the interpretations of t and u, where it is assumed
that τt = τu = 1. Equality will be interpreted strictly, meaning that t = u will
be false if either t or u (or both) evaluate to ⊥. Non-strict equality is expressed by
(t ∨ u) ⇒ t ≡ u.

– φ = ∃xψ is existential quantification over x in ψ; it will be deemed valid if an
appropriate (defined) value can be found for x such that ψ then holds. We limit
this to first-order and monadic second-order quantification (x ∈ Name0,1 or x ∈
Name1,0, respectively).
In the interpretation of the logic, to be defined below, a sub-formula x in the context
of a quantified formula ∃x ψ (i.e., the usage of a logical first-order variable as a
formula) stands for the fact that the entity denoted by x is still “alive”, i.e., has
not been de-allocated. For second-order variables p, the sub-formula p(x) in the
context of ∃p ψ denotes that x is among the (surviving) entities in the set p.

The other clauses correspond to the usual connectives from computation tree logic.
Briefly:

– EX φ expresses that φ holds in some state directly reachable from the current state;
– E(φ U ψ) expresses that there is a run of the system starting in the current state, in

which ψ holds at some point, and φ holds at all earlier points;
– A(φ U ψ) expresses that for all runs of the system starting in the current state, ψ

holds at some point, and φ holds in all earlier points.
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We will also freely use the derived formulae ∀xφ, φ∨ψ, AX φ (the dual of EX φ), AF φ
and EF φ (defined as A(tt U φ) and E(tt U φ), respectively) and their duals EG φ and
AF φ. We also define the free names of a formula φ, denoted fn(φ), as usual; we use
fni,j(φ) (= fn(φ) ∩ Namei,j) to denote the subset of names with arity i and type j.

An important special class of formulae are the propositional ones. These are formu-
lae for which the first- and second-order features of the logic are essentially unused: the
only names are propositions (i.e., with α = τ = 0) and no quantification is used.

Definition 1 (propositional formulae). A formula φ is called propositional if it is
quantifier-free and fn(φ) ⊆ Name0,0.

Example 1. Assume List ,Cell ,Data,S ∈ Name1,0, x , y ∈ Name0,1, next, val ∈
Name1,1 and connect ∈ Name2,0. The following are example properties of QCTL:

1. AG∀x (Cell(x ) ⇔ Data(val (x ))), expressing a type invariant, viz. that in all reach-
able states, val is defined only for, and for all, Cell -type entities, and always yields
a Data-type entity.

2. ∀x (Data(x ) ⇒ AF ¬x ), expressing that all currently existing Data-type entities
are eventually de-allocated.

3. ∀S EF ∃x (Data(x ) ∧ ¬S (x )), expressing that in all system behaviours, some new
Data-type entity is eventually allocated. (Note that S is a second-order variable;
¬S (x ) expresses that x is not in the set S , meaning that the entity denoted by x did
not exist in the state where S was bound.)

4. AG ∀x , y(List(x )∧Cell(y)∧connect(x , y) ⇒ (AG y)∨A(connect(x , y)U¬y)),
expressing that cells can become disconnected from a List-type entity only when
they are de-allocated.

5. AG ∀S (∀x Data(x )⇔S (x )) ⇒ AG ∀x ,y S (x ) ∧ Data(y) ⇒ S (y) ∨ A(y U ¬x),
expressing that Data-type entities are allocated and de-allocated in first-in-first-out
order. To understand this, note that the sub-formula ∀x Data(x ) ⇔ S (x ) specifies
that the logical second-order variable S is equivalent (in the state where S is bound)
to the predicate Data . Furthermore, A(y U¬x ) expresses that y lives at least as long
as x. Thus, ∀x ,y S (x )∧Data(y) ⇒ S (y)∨A(y U¬x ) expresses that, for all Data-
type entities x and y, if x existed in the (past) state where S was bound but y did
not — meaning that y was created after x — then y will survive x .

We introduce some further syntactic sugar. In the following let x ∈ Name0,1, S ∈
Name1,0 and T ∈ Name1,τ for some τ , and let t be a term with τt = 1.

– ∃x:T φ stands for ∃xT (x) ∧ φ;
– ∀x:T φ stands for ∀xT (x) ⇒ φ;
– Γx≡t φ stands for ∃xx≡t ∧ φ.
– ΓS≡T φ stands for ∃S (∀x S(x) ⇔ T (x)) ∧ φ.
– ΓS φ stands for ∃S (∀x S(x)) ∧ φ.

Thus, in ∃x:T φ, the first-order variable x is bound to some entity of “type” T (i.e., on
which T is defined), whereas in Γx≡t φ it is bound precisely to the current value of the
term t (which has to be defined). Likewise, in ΓS≡T φ, the second-order variable S is
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bound to the set of all values of type T ; finally, ΓS φ binds S to the set of all currently
existing values. The last three properties can be read as “let . . . equal . . . in φ.”

Using this syntactic sugar, for instance, the property in Ex. 1.5 above becomes

AG ΓS≡Data AG ∀x :S , y:Data(S (y) ∨ A(y U ¬x )) (1)

Valuations. To interpret the logic we need to express what the names stand for; in other
words, we need the concept of a valuation. Valuations are defined in terms of entities:
if E ⊆ Ent is some set of entities and N ⊆ Name a set of names, then a valuation of N
over E is a function V : N → E∗ ⇀ E0,1 such that for all x ∈ N , V (x): Eαx ⇀ Eτx;
in words, V assigns to every name a partial function of the appropriate arity and type.
The set of valuations of N over E is denoted Val[N, E]. Valuations are strictly extended
to terms, in the natural way:

V (f(u)) =
{

V (f)(V (u1) · · · V (uαf )) if V (ui) �= ⊥ for all 1 ≤ i ≤ αf
⊥ otherwise.

We call N the domain of V , denoted dom(V ). Note that we may actually have V (x) =
⊥ for x ∈ N0,1; in this case, the variable x is in the domain of V despite the fact that
V assigns “undefined” to it.

Another way to understand the concept of a valuation V ∈ Val[N, E] is that it defines
a partial N -algebra over the domain E (N being the signature of the algebra).

If V ∈ Val[N, E] and W ∈ Val[M, E], then V {W} equals W wherever it is defined,
and V otherwise. Furthermore, V |−x denotes V minus the value for x. Formally:

V {W} : y �→
{

W (y) if y ∈ dom(W )
V (y) otherwise.

V |−x : y �→ V (y) if x �= y.

It follows that dom(V {W}) = N ∪ M and dom(V |−x) = N \ {x}.

3 Algebra Automata

To express the semantics of QCTL we define an automata model that includes a fixed
set of model names, as well as a separate domain of values at each state, with a cor-
responding valuation of the model names. In fact, the domain and valuation together
constitute an algebra for the model names (considered as a signature). Furthermore, we
use an idea from History-Dependent Automata proposed by Montanari and Pistore [17],
namely to allow reallocations of values between states.

Definition 2. Let Ent be a set of entities. An algebra automaton A over Ent is a tuple
〈N, S, D, A, →, I〉 where

– N ⊆ Name is a finite set of names;
– S is a set of states;
– D: S → 2Ent associates with every s ∈ S a domain D(s) of values “existing” in s;
– A: S → Val[N, Ent] associates with every s ∈ S an algebra A(s) ∈ Val[N, D(s)];
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– → ⊆ S × (Ent ⇀ Ent) × S is an indexed binary relation between states, where
the indices are partial injective functions that map the domain of the source state
to the domain of the target state; thus, s →λ s′ implies λ: D(s) ⇀ D(s′). Every
state has at least one outgoing transition;

– I ⊆ S is a set of initial states.

A is called finite if S is finite and D(s) is finite for all s ∈ S.

The index λ in a transition s →λ s′ stands for a reallocation (or renaming) of entities.
That is, an entity e ∈ D(s) that does not have an image in λ is deallocated (dies)
during the transition; otherwise, the entity remains in existence but is known in s′ as
λ(e). Entities e′ ∈ D(s′) that are not in the range of λ are allocated (created, born).
Note that λ is not required to preserve the algebraic structure of the state: indeed the
structure may change, e.g., references or values may be reassigned, as in the transitions
λBC and λDC in the following example.

Example 2. Let e ∈ Name0,0, f ∈ Name0,1 and n ∈ Name1,1 stand for empty, the first
and next elements in a list; then ?? shows an algebra automaton with N = {e, f ,n}
which models the behaviour of a list (of maximum length 3) of which the elements
are allocated and deallocated in a first-in-first-out manner. The rounded rectangles are
states, containing valuations V ∈ Val[N, Nat] (so the numbered nodes represent the en-
tities): proposition e holds in the state where it is inscribed, whereas the constant V (f )
and the partial function V (n) are given as arrows. The reallocations λ are shown as
dashed arrows, implicitly associated with the transitions in the corresponding direction.

From [17] we recall the important property that history-dependent automata can be min-
imized with respect to bisimilarity, defined appropriately to abstract from the entities
while maintaining the algebraic structure up to isomorphism. That is, a bisimulation be-
tween algebra automata A1 and A2 is a family of symmetric relations
{Rf ⊆ S1 × S2}f :Ent→Ent, such that (s1, s2) ∈ Rf implies

– f is an isomorphism from A1(s1) to A2(s2);
– s1 −→λ s′1 implies s2 −→μ s′2 for some s′2 such that (s′1, s

′
2) ∈ Rg with g ◦ λ = μ ◦ f ;

– s2 −→μ s′2 implies s1 −→λ s′1 for some s′1 such that (s′1, s
′
2) ∈ Rg with g ◦ λ = μ ◦ f .

We call A1 and A2 bisimilar, denoted A1 ∼ A2, if there exists such a bisimulation
{Rf}f , such that Rid is a total relation between I1 and I2.

Essentially, minimization w.r.t. ∼ comes down to symmetry reduction: all states with
isomorphic algebras can be folded together, maintaining the connection with the entities
in neighbouring states through the reallocations. In the automaton of Fig. 1, which is
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already minimized, this can be seen from the fact that the reallocations λCD and λDC

between are not inverse to one another. Unfolding this example automaton so that all
reallocations become (partial) identities results in a quadratic blowup (in the number of
states). In the worst case the blowup is exponential in the size of the algebra — or in
other words, minimization w.r.t. ∼ can result in a logarithmically smaller automaton.

The well-known model of Kripke structures appears as an important special case,
where all the names are propositions (i.e., in Name0,0) and there are no entities. We call
such automata propositional.

Definition 3 (propositional automata). An algebra automaton is called propositional
if N ⊆ Name0,0 and D(s) = ∅ for all s ∈ S.

A key fact used in this paper (see Th. 2 below) is that for the special case of proposi-
tional automata and propositional formulae, efficient solutions to the model checking
problem are well known from the literature (cf. [7]).

3.1 Semantics of QCTL

We now express the semantics of QCTL in terms of algebra automata. For this purpose
we first need the notion of a run of such an automaton. Note that we have applied a
common trick by enforcing every state to have at least one outgoing transition; this
makes the presentation technically easier.

Definition 4 (paths runs). Let A be an algebra automaton. A path through A is a finite
or infinite alternating sequence σ = s0 λ1 s1 λ2 s2 · · ·, ending on a state if the sequence
is finite, such that for all λi in the sequence, si−1 →λi si is a transition in A. The path
is called a run if it is infinite.

The set of runs of A is denoted runs(A). If σ = s0 λ1 s1 λ2 · · · is a run then
– For all i ≥ 0, σ|si denotes the state at position i in the run, i.e., si;
– For all i > 0, σ|λi denotes the reallocation at position i in the run, i.e., λi;
– For all i ≥ 0, σ|λ≤i denotes the reallocation up to position i in the run, i.e., λi ◦

λi−1 ◦ · · · ◦ λ1. This is interpreted to yield idD(s0) if i = 0.

The semantics of QCTL is expressed by a relation A, s, V |= φ where φ is a QCTL-
formula, A is an algebra automaton, s ∈ S is a state of A and V ∈ Val[M, D(s)] is a
valuation, with fn(φ) ⊇ M ∪ NA. We write A, V |= φ if A, s, V |= φ for all s ∈ I .
Moreover, we may omit V if dom(V ) = ∅, and A if it is clear from the context. The
modelling relation is defined by induction on the structure of φ, as follows:

A, s, V |= t :⇔ A(s){V }(t) �= ⊥
A, s, V |= t ≡ u :⇔ A(s){V }(t) = A(s){V }(u) (�= ⊥)
A, s, V |= ∃x φ :⇔ A, s, V {W} |= φ for some W ∈ Val[{x}, D(s)]
A, s, V |= EX φ :⇔ A, s′, λ ◦ V |= φ for some s →λ s′

A, s, V |= E(φ U ψ) :⇔ there is a σ ∈ runs(A) with σ|s0 = s such that
A, σ|si , σ|λ≤i ◦ V |= ψ for some i ≥ 0 and
A, σ|sj , σ|λ≤j ◦ V |= φ for all 0 ≤ j < i;

A, s, V |= A(φ U ψ) :⇔ for all σ ∈ runs(A) with σ|s0 = s:
A, σ|si , σ|λ≤i ◦ V |= ψ for some i ≥ 0 and
A, σ|sj , σ|λ≤j ◦ V |= φ for all 0 ≤ j < i.
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The following property (the proof of which is straightforward and omitted here) is im-
portant in the light of the discussion above regarding minimization up to bisimilarity:

Theorem 1. If A ∼ B, then A, V |= φ iff B, V |= φ for all QCTL-formulae φ.

We can now formulate the “key fact” about model checking propositional formulae,
referred to above:

Theorem 2 (See [7]). Given a finite algebra automaton A and a propositional formula
φ, A |= φ can be decided in time linear in the size of φ and the size of A.

Example 3. Without proof, we assert that the automaton of Fig. 1 satisfies the formulae

AG ∀x n(x ) ⇒ Γy≡n(x ) A(y≡n(x ) U ¬x ) (2)

AG ΓS AF ∃x ¬S (x ) (3)

AG ∀x AF ¬x (4)

AG ΓS AG ∀x :S ∀y S (y) ∨ A(y U ¬x) (5)

AG EF e . (6)

Property (2) expresses that the n-pointers in the automaton are immutable in the sense
that whenever the term n(x ) is defined for a given entity x , it will go on designating the
same value until x itself is deallocated. Property (4) is a simplified form of Ex. 1.2 ex-
pressing that every entity is always eventually deallocated. Likewise, (3) is a simplified
form of Ex. 1.3 expressing that a fresh entity is always eventually allocated. Property
(5) is a simplified version of (1) expressing that entities are created and destroyed in a
first-in-first-out schedule.

Finally, (6) expresses that the state where the list is empty always remains reachable.
This is in fact a propositional formula and so can be model checked with existing meth-
ods (see Th. 2). Note that algebra automata include no fairness criterion, and so it is not
true that the empty list is always eventually reached (i.e., the property AG AF e is not
satisfied). See, however, Sect. 5 where we discuss the extension of the model with just
such a fairness criterion.

The following theorem states an intuitively straightforward property, heavily used in
practice, namely that quantifier-free formulae can be treated as if they were proposi-
tional, by defining propositions for all basic formulae t and t ≡ u and abstracting the
models accordingly.

Theorem 3. Let A be an algebra automaton and let φ be a formula with fn(φ) ⊆
N . If φ is quantifier-free, then there is a propositional formula φ′ and a propositional
automaton A′, with size(φ′) = size(φ), SA′ = SA and →A′ = {(s, ∅, s′) | s →λ s′},
such that A |= φ if and only if A′ |= φ′.

Proof. We sketch the proof. The idea is to introduce a propositional name nβ ∈ Name0,0

for every base sub-formula ψ in φ, where a base formula is of the form ψ = t or
ψ = t≡u. φ′ equals φ with all base formulae ψ replaced by the corresponding names
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nψ; A′ is constructed from A by re-using the states, setting D′(s) = ∅ for all s ∈ S,
re-using the transitions while stripping away the reallocations λ, and defining

A′(s): nψ �→
{

ε if ψ = t and A(s)(t) �= ⊥
ε if ψ = t≡u and A(s)(t) = A(s)(u) �= ⊥
⊥ otherwise.

The proof obligation is implied by the following property, which can be proved by
induction on the structure of φ: For all s ∈ S, A, s |= φ if and only if A′, s |= φ′. ��

4 Skolemization

The essential idea in model checking a QCTL formula φ over a given algebra automa-
tion A is to turn the bound logical variables in φ into new (non-rigidly designating)
model constants — a principle known as Skolemization — and to simulate the binding
of a logical variable during the evaluation of the formula by a random assignment to
the corresponding model constant. We can then equivalently model check a transformed
formula φ−, where all quantifications are changed into next-step modalities, over the
extended automaton. Since φ− is quantifier-free, due to Th. 3 we can apply existing
theory to solve the transformed model checking problem.

In fact it is not enough to add the variables to the model and simulate their assign-
ment: in addition we have to be able to distinguish between the transitions of the original
automaton and the new “assignment transitions”. This will be done by using assignment
flags, which are proposition names αx ∈ Name0,0 for all variables x to be Skolemized,
as well as one distinguished flag ᾱ, which stands for no assignment and behaves as the
negated disjunction of the αx. In the remainder we assume that the assignment flags are
globally given and distinct from all other names in the automaton and the formula to be
checked. Furthermore, for a given set of variables X we use αX = {αx | x ∈ X}∪{ᾱ}
to denote the set of all assignment flags. We also use β, γ to range over αX .

Definition 5. Let A be an algebra automaton, and X ⊆ Name. The X-Skolemization
of A, denoted A+X , is given by 〈N ′, S′, →′, D′, A′, I ′〉 with

N ′ = N ∪ X ∪ αX

S′ = {(s, W, ᾱ) | W ∈ Val[X, D(s)]} ∪
{(s, W, αx) | W ∈ Val[X, D(s)], x ∈ X, W (x) �= ⊥}

→′ = {((s, W, ᾱ), λ, (s′, λ ◦ W, ᾱ)) | s →λ s′} ∪
{((s, W, ᾱ), idD(s), (s, W ′, αx)) | (s, W, ᾱ) ∈ S′, W ′|−x = W |−x} ∪
{((s, W, αx), idD(s), (s, W, ᾱ)) | (s, W, ᾱ) ∈ S′}

D′ = {((s, W, β), D(s)) | (s, W, β) ∈ S′}
A′ = {((s, W, β), A(s){W}{ε/β}) | (s, W, β) ∈ S′}
I ′ = {(s, W, ᾱ) | s ∈ I, dom(W ) = ∅} .

The principle of the construction is to allow, in every state, to “guess” a random value
and assign it to one of the new variables in the set X . Each state of the extended au-
tomaton is a triple consisting of the corresponding state of the original automaton, a
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combined assignment W , and an assignment flag β indicating which (if any) of the
Skolemized variables has been assigned a new value since the previous state. That is,
either β = ᾱ if the valuation was unchanged, or β = αx for some x ∈ X if a new
value for x was guessed in the transitions leading up to the state. There are three types
of transitions: those reflected from the original automaton, those reflecting random as-
signment steps, and those leading back from an assignment state to a “normal” state.
In the first type, β = ᾱ in source and target state and the guessed valuation W is kept
constant (modulo the reallocation); in the second type, the state is unchanged, β = αx

(for some x ∈ X) in the target state and W may change (only) at x; in the third type,
β = αx in the source state, and the state and guessed valuation are kept constant.

The corresponding transformation of the formulae is defined as follows:

t− = t

(t ≡ u)− = t ≡ u

(¬φ)− = ¬φ−

(φ ∨ ψ)− = φ− ∨ ψ−

(∃xφ)− = EX(αx ∧ EX φ−)
(EX φ)− = EX(ᾱ ∧ φ−)

E(φ U ψ)− = E((ᾱ ∧ φ−) U (ᾱ ∧ ψ−))
A(φ U ψ)− = A(φ− U (ᾱ ⇒ ψ−))

The intuition is that quantification is operationalised by a transition of the extended
automaton, which guesses a value for the quantified variable — followed by another
transition that returns to a “regular” state. The quantification operator itself is likewise
turned into a pair of next-step operators. In order to distinguish “regular” from “assign-
ment” next-steps, we test for the absence or presence of an assignment flag.

The following is the main theorem of this paper:

Theorem 4. Let φ be an arbitrary formula; let X denote the set of names bound in φ.
For any algebra automaton A with fn(φ) ⊆ N , the following equivalence holds:

A |= φ if and only if A+X |= φ− .

Proof. The theorem follows from the following, stronger property, which holds for all
s ∈ S and V ∈ Val[Y, D(s)]:

A, s, V |= φ if and only if A+X , (s, V, ᾱ) |= φ− .

This is proved by induction on the structure of φ. ��
Example 4. Let φ denote property (4), and A the algebra automaton of Ex. 2, simplified
to a list of maximum length 2. Fig. 2 shows A+{x}: the dotted arrows are the assignment
transitions, and the λ’s are indicated by pairs of entities, from the source resp. the target
state. The skolemized formula is

φ− = AG(AX(αx ⇒ EX AF(ᾱ ⇒ ¬x )))

Clearly, checking φ− over A+{x} is a case of PCTL model checking. The states where
ᾱ ⇒ ¬x holds are shaded in the figure.
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Fig. 2. Skolemization of part of the automaton of Fig. 1 w.r.t. x ∈ Name0,1

The size of A+X can be computed as follows: for modelling the possible choices of a
first-order variable we need |D(s)| new states for each s ∈ SA; for a second-order vari-
able this is 2|D(s)|. The number of “original” transitions between the new states grows
with the same factor, and the number of “assignment” transitions is triple the number
of new states. Thus Skolemizing a single variable blows up the automaton linearly (for
first-order) resp. exponentially (for second-order) in the maximum domain size. This is
repeated for every variable bound in φ, making the blow-up exponential in the number
of variables. (Note that the domais themselves are not affected.)

Theorem 5 (complexity). Let A be an algebra automaton with maximum algebra size
a; let X ⊆ Name0,1 ∪ Name1,0 and let d1 = |X0,1| and d2 = |X1,0|. If B = A+X ,
then |SB| ≤ s · |SA| and |→B| ≤ s · |→A| with s = O((d1 + d2) · ad1 · 2a·d2).

Skolemization of the formula also increases its size, but by a constant factor only.

Theorems 2, 3, 4 and 5 together give rise to the following worst-case time complexity:

Corollary 1. A QCTL formula can be model checked over a finite algebra automaton
in time linear in the number of states and transitions, exponential in the size of the
formula and exponential in the maximum size of the state domains.

5 Improvements

As defined above, skolemization only takes a set of (typed) names as input. By taking
more information about the formula to be checked into account, the definition can be
improved in several ways, resulting in a smaller automaton.

Collectively Bound Names. In Def. 5 the skolemized automaton receives assignment
transitions everywhere. Yet they are used only to mimic quantification in the formula,
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say φ, that we want to model check. Through an analysis of φ, we can omit many of the
assignment transitions or their target states that can clearly never be taken or reached,
and thus achieve an appreciable reduction of the skolemized automaton.

A simple observation which can already cause a large reduction is that we only need
to assign to sets of variables that occur together in some sub-formula. Define the col-
lectively bound names N (φ) ⊆ 2Name for arbitrary φ ∈ QCTL as follows:

– N (φ) = {∅} whenever φ is quantifier-free;
– N (¬φ) = N (EX φ) = N (φ);
– N (φ ∨ ψ) = N (E(φ U ψ)) = N (A(φ U ψ)) = N (φ) ∪ N (ψ);
– N (∃x φ) = {Y ∪ {x} | Y ∈ N (φ)}.

In model checking φ−, all the states of A+X that are actually encountered are of the
form (s, V, β) with {x ∈ X | V (x) �= ⊥} ⊆ M for some M ∈ N (φ). It follows that
we may omit all states that are not of this form, and still obtain the same answer to
the model checking question for φ−. This obviously affects the size of the resulting
automaton, since the space over which the valuations V range is now possibly much
smaller. In terms of Th. 5, the factor s is now of the order

∑
M∈N (φ),d1=|M0,1|,d2=|M1,0| (d1 + d2) · ad1 · 2a·d2 .

Quantification Order. If we take the above analysis of the formula one step further,
it becomes clear that assignment transitions need only ever be taken in the order in
which we encounter quantifiers in φ, when traversing the syntax tree of φ top-down. For
instance, in (2) this order is x followed by y , whereas in (5) it is S–x–y . This means
that we may cut out transitions that attempt to assign the variables in any different
order. Since we may also cut out non-reachable parts of the automaton, this may cause
a further reduction.

For instance, in Fig. 2 the transitions leading from the bottom ᾱ-states back to the
αx-states would be removed by this optimization (without, however, a reduction in the
number of states).

Assignment. A further optimization, causing a generally unpredictable but potentially
large improvement, is to define a special treatment of the binders introduced as syntactic
sugar in Sect. 2: ∃x:T φ and its dual, but especially Γx≡t φ, ΓS≡T φ and ΓS φ. Namely,
in these cases the possible values assigned to the logical variables are not arbitrary
values but satisfy some very strict constraints; in fact, in the latter three cases they are
bound precisely to uniquely defined values.

In terms of Def. 5, if x is bound by such a special syntactic form then the assignment
states for x, i.e., the states (s, V, αx) in A+X , should all satisfy the corresponding con-
straint on V ; i.e., V (T )(V (x)) �= ⊥ for ∃x:T φ, V (x) = V (t) for Γx≡t φ, etc. Thus,
the number of resulting assignment states (for a given s) is no longer |D(s)| or 2|D(s)|,
but much smaller and some cases just 1! Unfortunately, we cannot conclude from this
that the whole skolemized automaton will always be that much smaller. This kind of
constrained assignment may ruin the symmetry that has originally allowed states to be
collapsed (while keeping track of entities through reallocations), and hence may par-
tially or wholly undo the symmetry reduction discussed in Sect. 3.
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Non-temporal Quantification In Th. 3 we have recalled how quantifier-free formulae
may be reduced to PCTL. As recounted in the introduction, the same principle still
works for quantified formulae, as long as all sub-formulae ∃xψ have the property that
ψ is without temporal operators. We may take advantage of this by defining yet another
optimization, in which all temporal-operator-free sub-formulae are reduced to proposi-
tional names, assigned the appropriate value by an extended valuation for the states.

As an example, regard property (3) (Page 118). The sub-formula ψ = ∃x ¬S (x ) is
free of temporal operators and hence a candidate for this optimization. The resulting
skolemized property becomes

AG(ᾱ ⇒ EX(αS ∧ EX AF(ᾱ ⇒ nψ)))

and the skolemized automaton needs to contain assignments to S only.

Fairness. Skolemization can still be applied if the algebra automata are extended with
a fairness condition. This involves constructing a corresponding fairness condition for
the skolemized automata, where the correspondence should be such that there is the
same relation between the fair runs of A and those of A+X as there is between the runs
as originally defined in Def. 4. We show the necessary construction without proof.

Assume an algebra automaton A in addition has a component F ⊆ 2S, and that
runs(A) is restricted to those sequences σ such that {i | σ|si ∈ F} = ∞ for all F ∈ F .
Then A+X should receive a corresponding component F ′ defined by

F ′ = { {(s, V, β) ∈ S | s ∈ F} | F ∈ F} .

In words, F ′ consists of those sets that project onto the fair sets of F . Note that there
are, in fact, many fair runs in A+X that do not project to fair runs of A, because they just
cycle around through the assignment states; however, the stripped formulae themselves
prevent these “spurious” runs from making a difference to their validity, just as in the
case without fairness.

With this adaptation, the proof of Th. 4 goes through just as before. Since, according
to [7], model checking PCTL is linear in the size of F , and this size is not affected by
the skolemization defined above, Corollary 1 can also be extended with a dependency
on the fairness criterion that is linear in the size of F .

6 Conclusions

We have presented an effective technique for checking QCTL, which combines monadic
second-order quantification with the temporal operators of CTL, on finite models with
arbitrary (bounded) algebraic structure on the states and reallocations on the transi-
tions. The reallocations allow models to be minimized up to bisimilarity (appropriately
defined), resulting in a best-case logarithmic reduction in the size of the automata.

It is interesting to note that the technique used in our proof extends to other temporal
logics in a limited way only. In order for the encoding of ∃x φ as EX(αx ∧ EX φ′) to
be valid, it seems crucial that φ is a state formula: if it is interpreted in the context of a
path then this context is lost in the encoding. This means that the technique is useless
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for LTL, whereas it can still be used in the fragment of PCTL∗ where quantification is
just allowed on state formulae (of the form E φ or, dually, A φ).

On the other hand, it should be possible to extend Skolemization to a setting where
the temporal modalities are defined through fixpoints, as in the μ-calculus [9]. Here the
fact that we can repeatedly assign to the same variable may turn out to be crucial.

The proof theory of quantified modal logic has been studied in depth in the con-
text of philosophical logic. An overview can be found in [14]; some more references
were given in the introduction. Results on automated theorem proving (which is a much
harder problem than the one studied here, since it is not restricted to finite models) are
presented in Castellini and Smaill [4, 5]. Some decidability results on words over infi-
nite alphabets can be found in [18, 3]. Finally, in [1] Baldan et al. present a translation
of a quantified temporal logic to a Petri net logic, and so obtain an automatic way to
approximate its verification.

As we pointed out in the introduction, a source of more closely related work is Yahav
et al. [21]. Their Evolution Temporal Logic, which is a quantified extension of Linear
Temporal Logic, is motivated by the same considerations as QCTL, namely to express
properties that track entities over time. Through abstraction they can conservatively
verify unbounded models, though they do not include reallocations.

As far as we are aware, however, the model checking question was not studied be-
fore, at least not for models with arbitrary algebraic structure on the states and quanti-
fied temporal logic. For models with unbounded domains (and consequently an infinite
number of states, in a suitable finite representation) but very limited structure, some re-
sults on model checking were presented in [11, 10]. The first of these shows decidability
of model checking for unstructured domains, i.e., just sets of entities; the second gives a
safe approximation in the case where the domains are singly-linked lists. Finally, model
checking for bounded domains and propositional temporal logic has been addressed in
many software model checking tools; for instance, Bandera (e.g., [8]).

As future work, we plan to implement the algorithm presented here in the GROOVE
tool for graph transformation-based verification [20], thereby realizing one important
step of the programme, set out in [19], for model checking graph grammars.
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