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niejszych wiezéw, ktdre niestety jakze czesto zrywaja interesa panstwowe.

Clavigo, Johann Wolfgang von Goethe
(Tlumaczenie: Wanda Markowska)



Preface

The wireless industry is in the midst of a fundamental shift from providing
voice-only services to offering customers an array of multimedia services, in-
cluding a wide variety of audio, video and data communications capabilities.
Future wireless networks will be integrated into every aspect of daily life,
and therefore could affect our life in a magnitude similar to that of the Inter-
net and cellular phones. However, the emerging applications and directions
require fundamental understanding on how to design and control wireless
networks that lies far beyond what the currently existing theory can provide.
We are deeply convinced that mathematics is the key technology to cope
with central technical problems in the design of wireless networks since the
complexity of the problem simply precludes the use of engineering common
sense alone to identify good solutions.

The main objective of this book is to provide tools for better understand-
ing the fundamental tradeoffs and interdependencies in wireless networks,
with the goal of designing resource allocation strategies that exploit these in-
terdependencies to achieve significant performance gains. The book consists
of three largely independent parts: theory, applications and appendices. The
first part ends with some bibliographical comments and the second part starts
with a short introduction to the problem of resource allocation in wireless
networks. Below we briefly summarize the content of each part.

Theory: Chapters 1 and 2 deal with some fundamental problems in the the-
ory of nonnegative matrices and provide a theoretical basis for the resource
allocation problem addressed in the second part of the book. It should be em-
phasized that our intent is not to provide a thorough treatment of this wide
subject. Instead, we focus on problems that naturally appear in the design
of resource allocation strategies for wireless networks. When developing such
strategies, different characterizations of the Perron root of nonnegative irre-
ducible matrices turn out to be vital to better understanding of fundamental
tradeoffs between diverse optimization objectives. Our main attention will be
directed to the Perron root of nonnegative irreducible matrices whose entries
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continuously depend on some parameter vector. In this case, the Perron root
can be viewed as a map from a convex parameter set into the set of positive
reals. The book is concerned with the properties of this map and, in partic-
ular, with the question under which conditions it is a convex function of the
parameter vector. With few exceptions, we focus on a special structure of
matrix-valued functions that is particularly relevant to applications in wire-
less networks. We provide necessary and sufficient conditions for the Perron
root to be a convex function of the parameter vector as well as address a
closely related problem of convexity of the so-called feasibility set. Chapter
2 is devoted to some properties of a positive solution to a system of linear
equations with nonnegative coefficients. Applications that involve systems of
linear equations with nonnegative coefficients are numerous, ranging from the
physical and engineering sciences to other mathematical areas like graph the-
ory and optimization. Such systems also occur in the power control problem
for power-constrained wireless networks.

Applications: The second part of the book (Chaps. 4-6) deals with the
problem of resource allocation in wireless networks. Roughly speaking, the
objective is to maximize the sum of utilities of link rates for best-effort (elas-
tic) traffic. This is equivalent to the problem of joint power control and link
scheduling, which has been extensively investigated in the literature and is
known to be notoriously difficult to solve, even in a centralized manner. Al-
though the book provides some interesting insights into this problem, the
main focus will be on the power control part. In particular, a class of utility
functions is identified for which the power control problem can be converted
into an equivalent convex optimization problem. The convexity property is
a key ingredient in the development of powerful and efficient power control
algorithms.

Appendices: The main purpose of the appendices is to make the book more
understandable to readers who are not familiar with some basic concepts and
results from linear algebra and convex analysis. The treatment is very su-
perficial and formal proofs are presented only for the most important results
such as the Perron—Frobenius theorem. Moreover, the presentation is limited
to results used somewhere in the book. However, we hope that this collec-
tion of basic results will help some readers to better understand the material
covered by the book. Finally, the presentation introduces the notation and
terminology used throughout the book.

Acknowledgments: The work of Holger Boche and Stawomir Stanczak was
supported in part by the Bundesministerium fir Bildung und Forschung
(BMBF) under grants 01BU150 (Hyeff), 01BU350 (3GET) and 01BU566
(ScaleNet). Marcin Wiczanowski was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant BO1734/7-1. The authors also acknowledge
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support from Alcatel SEL Forschungszentrum in Stuttgart, and Siemens CT
in Miinchen, as well as valuable suggestions and comments from colleagues.

And finally, we would like to thank our families for their patience, support
and understanding. This book is dedicated to you.

Berlin, June 2006 Stawomir Stanczak
Marcin Wiczanowski
Holger Boche
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