Abstract
Monitoring abnormal patterns in data streams is an important research area for many applications. In this paper we present a new approach MAPS(Monitoring Abnormal Patterns over data Streams) to model and identify the abnormal patterns over the massive data streams. Compared with other data streams, ICU streaming data have their own features: pseudo-periodicity and polymorphism. MAPS first extracts patterns from the online arriving data streams and then normalizes them according to their pseudo-periodic semantics. Abnormal patterns will be detected if they are satisfied the predicates defined in the clinician-specifying normal patterns. At last, a real application demonstrates that MAPS is efficient and effective in several important aspects.
This work is supported by Natural Science Foundation of China(NSFC) under grant number 60473072.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream Systems. In: SIGMOD POS (2002)
Abadi, D., Carney, D., Cetinternet, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: A New Model and Architecture for Data Stream Management. VLDB Journal (August 2003)
Chandrasekharan, S., et al.: TelegraphCQ: Continuous dataflow processing for an uncertain world (2003)
Maier, D., Li, J., Tucker, P., Tufte, K., Papadimos, V.: Semantics of Data Streams and Operators. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 37–52. Springer, Heidelberg (2004)
Zhu, Y., Shasha, D.: StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time. VLDB, 358–369 (2002)
Fan, Y., Li, H., Hu, Z., Gao, J., Liu, H., Tang, S.-w., Zhou, X.: DSEC: A data stream engine based clinical information system. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 1168–1172. Springer, Heidelberg (2006)
Fan, Y., Li, H.: ICUIS: A Rule-Based Intelligent ICU Information System. In: Proceedings of IDEAS04-EH, China, September 29-31 (2004)
Hu, Z., Li, H., Qiu, B., Tang, L.-a., Fan, Y., Liu, H., Gao, J., Zhou, X.: Using Control Theory to Guide Load Shedding in Medical Data Stream Management System. In: Grumbach, S., Sui, L., Vianu, V. (eds.) ASIAN 2005. LNCS, vol. 3818, pp. 236–248. Springer, Heidelberg (2005)
Yin, T., Li, H., Hu, Z., Fan, Y., Gao, J., Tang, S.-w.: A Hybrid Method for Detecting Data Stream Changes with Complex Semantics in Intensive Care Unit. In: Grumbach, S., Sui, L., Vianu, V. (eds.) ASIAN 2005. LNCS, vol. 3818, pp. 284–285. Springer, Heidelberg (2005)
Sethares, W.A.: Repetition and pseudo-periodicity, Tatra Mountains Mathematical Publications, Publication 23 (2001)
Kay, S.M.: Fundamentals of staticstical signal processing volume I estimation theory volume II detection theory, 8 (2002)
Michalski, R.S., Bratko, I., Kubat, M.: Machine learning and data mining methods and applications (2003)
Harada, L.: Detection of complex temporal patterns over data stream. Information System 29, 439–459 (2004)
Cai, Y.D., Clutter, D., Pape, G., Han, J., Welge, M., Auvil, L.: MAIDS: Mining Alarming Incidents from Data Streams. In: ACM SIGMOD 2004 (2004)
Gao, L., Yang, X., Wang, S.: Continually evaluating similarity-based pattern queries on a streaming time series. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, June 2002, pp. 370–381 (2002)
Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in Data Streams. In: Proceedings for the 30th VLDB Conference, Toronto, Canada (2004)
Wu, H., Salzberg, B., Zhang, D.: Online Event-driven Subsequence Matching over Financial Data Streams. In: SIGMOD 2004, Paris, France (2004)
Charbonnier, S., Becq, G., Biot, L.: Online segmentation algorithm for continuously monitored data in Intensive Care Units. IEEE Transactions on Biomedical Engineering 51, 484–492 (2004)
Muthukrishnan, S.: DataStreams: Algorithms and Applications, http://athos.rutgers.edu/muthu/stream-1-1.ps/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhou, X. et al. (2006). Monitoring Abnormal Patterns with Complex Semantics over ICU Data Streams. In: Zheng, N., Jiang, X., Lan, X. (eds) Advances in Machine Vision, Image Processing, and Pattern Analysis. IWICPAS 2006. Lecture Notes in Computer Science, vol 4153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821045_20
Download citation
DOI: https://doi.org/10.1007/11821045_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37597-5
Online ISBN: 978-3-540-37598-2
eBook Packages: Computer ScienceComputer Science (R0)