Skip to main content

NOF-Multiparty Information Complexity Bounds for Pointer Jumping

  • Conference paper
Mathematical Foundations of Computer Science 2006 (MFCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

  • 1067 Accesses

Abstract

We prove a lower bound on the communication complexity of pointer jumping for multiparty one-way protocols in the number on the forehead model that satisfy a certain information theoretical restriction: We consider protocols for which the ith player may only reveal information about the first i+1 inputs. To this end we extend the information complexity approach of Chakrabarti, Shi, Wirth, and Yao (2001) and Bar-Yossef, Jayram, Kumar, and Sivakumar (2004) to our restricted version of the multiparty number on the forehead model. The best currently known multiparty protocol for pointer jumping by Damm, Jukna, and Sgall (1998) works in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of simultaneous messages. SIAM J. Comput. 33, 137–166 (2004)

    Article  Google Scholar 

  2. Babai, L., Hayes, T.P., Kimmel, P.G.: The cost of the missing bit: Communication complexity with help. Combinatorica 21, 455–488 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45, 204–232 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: Information theory methods in communication complexity. In: Proc. of 17th CCC, pp. 93–102 (2002)

    Google Scholar 

  5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci. 68, 702–732 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beame, P., Pitassi, T., Segerlind, N., Wigderson, A.: A direct sum theorem for corruption and the multiparty NOF communication complexity of set disjointness. In: Proc. of 20th CCC, pp. 52–66 (2005)

    Google Scholar 

  7. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.C.: Informational complexity and the direct sum problem for simultaneous message complexity. In: Proc. of 42nd FOCS, pp. 270–278 (2001)

    Google Scholar 

  8. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proc. of 15th STOC, pp. 94–99 (1983)

    Google Scholar 

  9. Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness. SIAM J. Discret. Math. 6, 110–125 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience, Hoboken (1991)

    Book  MATH  Google Scholar 

  11. Damm, C., Jukna, S., Sgall, J.: Some bounds on multiparty communication complexity of pointer jumping. Comput. Complex. 7, 109–127 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (2002)

    Google Scholar 

  13. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  14. Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SIAM J. Comput. 22, 211–219 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ponzio, S., Radhakrishnan, J., Venkatesh, S.: The communication complexity of pointer chasing. J. Comput. Syst. Sci. 62, 323–355 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pudlák, P., Rödl, V., Sgall, J.: Boolean circuits, tensor ranks, and communication complexity. SIAM J. Comput. 26, 605–633 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Raz, R.: The BNS-Chung criterion for multi-party communication complexity. Comput. Complex. 9, 113–122 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: Proc. of 11th STOC, pp. 209–213 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gronemeier, A. (2006). NOF-Multiparty Information Complexity Bounds for Pointer Jumping. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_40

Download citation

  • DOI: https://doi.org/10.1007/11821069_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics