Skip to main content

Characterizing Valiant’s Algebraic Complexity Classes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

Valiant introduced 20 years ago a theory to study the complexity of polynomial families. Using arithmetic circuits as computation model, these classes are easy to define and open to combinatorial techniques. In this paper we gather old and new results under a unifying theme, namely the restrictions imposed upon the gates, building a hierarchy from formulas to circuits. As a consequence we get simpler proofs for known results such as the equality of the classes VNP and VNPe or the completeness of the determinant for VQP, and new results such as a characterization of the class VP or answers to both a conjecture and a problem raised by Bürgisser [1]. We also show that for circuits of polynomial depth and unbounded size these models have the same expressive power and characterize a uniform version of VNP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bürgisser, P.: Completeness and reduction in algebraic complexity theory. Algorithms and Computation in Mathematics, vol. 7. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Kaltofen, E.: Uniform closure properties of p-computable functions. In: STOC 1986: Proceedings of the eighteenth annual ACM symposium on Theory of computing, pp. 330–337. ACM Press, New York (1986)

    Chapter  Google Scholar 

  3. von zur Gathen, J.: Feasible arithmetic computations: Valiant’s hypothesis. J. Symb. Comput. 4, 137–172 (1987)

    Article  MATH  Google Scholar 

  4. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, June 9-11, pp. 355–364 (2003)

    Google Scholar 

  5. Koiran, P.: Valiant’s model and the cost of computing integers. Computational Complexity 13, 131–146 (2005)

    Article  MathSciNet  Google Scholar 

  6. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.: On the complexity of numerical analysis. In: Electronic Colloquium on Computational Complexity, ECCC (2004)

    Google Scholar 

  7. Immerman, N., Landau, S.: The complexity of iterated multiplication. Inf. Comput. 116, 103–116 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Toda, S.: Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE Transactions on Information and Systems E75-D, 116–124 (1992)

    Google Scholar 

  9. Babai, L., Fortnow, L.: Arithmetization: a new method in structural complexity theory. Comput. Complexity 1, 41–66 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic circuits: depth reduction and size lower bounds. Theoret. Comput. Sci. 209, 47–86 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations over semirings. J. ACM 29, 874–897 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Venkateswaran, H., Tompa, M.: A new pebble game that characterizes parallel complexity classes. SIAM J. Comput. 18, 533–549 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes. SIAM J. Comput. 21, 655–670 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Malod, G.: Polynômes et coefficients. PhD thesis, Université Claude Bernard Lyon 1 (2003)

    Google Scholar 

  15. Venkateswaran, H.: Properties that characterize LOGCFL. J. Comput. Syst. Sci. 43, 380–404 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Allender, E.: Arithmetic Circuits and Counting Complexity Classes. In: Krajicek, J. (ed.) Complexity of Computations and Proofs. Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Universita di Napoli (2004)

    Google Scholar 

  17. Bläser, M.: Complete problems for valiant’s class of qp-computable families of polynomials. In: Wang, J. (ed.) COCOON 2001, vol. 2108, pp. 1–10. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Mahajan, M., Vinay, V.: Determinant: Combinatorics, algorithms, and complexity. Chicago J. Theor. Comput. Sci. 1997 (1997)

    Google Scholar 

  19. Pólya, G.: Aufgabe 424. Arch. Math. Phys. 20, 271 (1913)

    Google Scholar 

  20. Périfel, S.: Polynômes donnés par des circuits algébriques et généralisation du modèle de Valiant. Master’s thesis, École Normal Supérieure de Lyon, France (2004)

    Google Scholar 

  21. Damm, C., Holzer, M., McKenzie, P.: The complexity of tensor calculus. Computational Complexity 11(1-2), 54–89 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malod, G., Portier, N. (2006). Characterizing Valiant’s Algebraic Complexity Classes. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_61

Download citation

  • DOI: https://doi.org/10.1007/11821069_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics