Skip to main content

On Genome Evolution with Innovation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

We introduce and analyse a simple probabilistic model of genome evolution. It is based on three fundamental evolutionary events: gene duplication, loss and innovation, and it is called DLI model. The focus of the paper is around the size distribution of gene families. The formulas for equilibrium gene family sizes are derived showing that they follow a logarithmic distribution. We consider also a disjoint union of DLI models and we present the result of this study. Some empirical results for microbial genomes are presented.

This work was partially supported by KBN grants: 3 T11F 021 28 and 3 TF11 016 28.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dujon, B., et al.: Genome evolution in yeasts. Nature 430, 35–44 (2004)

    Article  Google Scholar 

  2. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30(7), 1575–1584 (2002)

    Article  Google Scholar 

  3. Feller, W.: An introduction to probability theory and its applications. John Wiley and Sons, Inc., New York (1961)

    Google Scholar 

  4. Fitch, W.M.: Homology, a personal view on some of the problems. Trends in Genetics 16(5), 227–321 (2000)

    Article  Google Scholar 

  5. Huynen, M.A., van Nimwegen, E.: The Frequency Distribution of Gene Family Size in Complete Genomes. Molecular Biology Evolution 15(5), 583–589 (1998)

    Google Scholar 

  6. Jordan, K., Makarova, K.S., Spouge, J.L., Wolf, Y.I., Koonin, E.V.: Lineage-Specific Gene Expansions in Bacterial and Archeal Genomes. Genome Research 11, 555–565 (2001)

    Article  Google Scholar 

  7. Karev, G.P., Wolf, Y.I., Rzhetsky, A.Y., Berezovskaya, F.S., Koonin, E.V.: Birth and death of protein domains: A simple model of evolution explains power law behavior. BMC Evolutionary Biology 2, 18 (2002)

    Article  Google Scholar 

  8. Karev, G.P., Wolf, Y.I., Koonin, E.V.: Simple stochastic birth and death models of genome evolution: was there enough time for us to evolve? Bioinformatics 15(19), 1889–1900 (2003)

    Article  Google Scholar 

  9. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  10. Li, W.-H.: Moclecular Evolution. Sinauer Associates, Inc., Publishers, Sunderland Massachusetts (1997)

    Google Scholar 

  11. Luz, H., Vingron, M.: Family specific rates of protein evolution. Bioinformatics 22(10), 1166–1171 (2006)

    Article  Google Scholar 

  12. Ohno, S.: Evolution by Gene Duplication. Springer, Berlin (1970)

    Google Scholar 

  13. Peterson, J.D., Umayam, L.A., Dickinson, T.M., Hickey, E.K.: O. White The Comprehensive Microbial Resource. Nucleic Acids Research 29(1), 123–125 (2001)

    Article  Google Scholar 

  14. Slonimski, P.P., Mosse, M.O., Golik, P., Henaût, A., Diaz, Y., Risler, J.L., Comet, J.P., Aude, J.C., Wozniak, A., Glemet, E., Codani, J.J.: The first laws of genomics. Microbial and Comparative Genomics 3(46) (1998)

    Google Scholar 

  15. Slonimski, P.P.: Comparision of complete genomes: Organization and evolution. In: Proceedings of the Third Annual Conference on Computational Molecular Biology, RECOMB 1999. Stanislaw Ulam Memorial Lecture, vol. 310. ACM Press, New York (1999)

    Google Scholar 

  16. Tiuryn, J., Rudnicki, R., Wójtowicz, D.: A case study of genome evolution: From continuous to discrete time model. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 1–24. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Tiuryn, J., Wójtowicz, D., Rudnicki, R.: A Model of Evolution of Small Paralog Families in Genomes (2006) (submited for publication)

    Google Scholar 

  18. Yanai, I., Camacho, C.J., DeLisi, C.: Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification. Physical Review Letters 85(12), 2641–2644 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wójtowicz, D., Tiuryn, J. (2006). On Genome Evolution with Innovation. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_69

Download citation

  • DOI: https://doi.org/10.1007/11821069_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics