Skip to main content

Approximate Shortest Path Queries on Weighted Polyhedral Surfaces

  • Conference paper
Mathematical Foundations of Computer Science 2006 (MFCS 2006)

Abstract

We consider the classical geometric problem of determining shortest paths between pairs of points lying on a weighted polyhedral surface P consisting of n triangular faces. We present query algorithms that compute approximate distances and/or approximate (weighted) shortest paths. Our algorithm takes as input an approximation parameter ε∈(0,1) and a query time parameter \(\mathfrak{q}\) and builds a data structure which is then used for answering ε-approximate distance queries in \(O(\mathfrak{q})\) time. This algorithm is source point independent and improves significantly on the best previous solution. For the case where one of the query points is fixed we build a data structure that can answer ε-approximate distance queries to any query point in P in \(O(\log\frac{1}{\varepsilon})\) time. This is an improvement upon the previously known solution for the Euclidean fixed source query problem. Our algorithm also generalizes the setting from previously studied unweighted polyhedral to weighted polyhedral surfaces of arbitrary genus. Our solutions are based on a novel graph separator algorithm introduced here which extends and generalizes previously known separator algorithms.

Research supported by NSERC, SUN Microsystems, and a P.E.O. Scholar Award. The first and the second author are Adjunct Professors at Carleton University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applications. SIAM J. Comput. 26(6), 1689–1713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Har-Peled, S., Sharir, M., Varadarajan, K.R.: Approximate shortest paths on a convex polytope in three dimensions. J. ACM 44, 567–584 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aleksandrov, L., Djidjev, H.: Linear algorithms for partitioning embedded graphs of bounded genus. SIAM J. Disc. Math. 9(1), 129–150 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aleksandrov, L., Djidjev, H., Guo, H., Maheshwari, A.: Partitioning planar graphs with costs and weights. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 98–110. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An ε-approximation algorithm for weighted shortest path queries on polyhedral surfaces. In: Proc. 14th Euro CG Barcelona, pp. 19–21 (1998)

    Google Scholar 

  6. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. J. ACM 52(1), 25–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. SIAM J. Comput. 35, 627–646 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Proc. 6th ACM Symposium on Computational Geometry, pp. 360–369 (1990); also IJCGA 6, 127–144 (1996)

    Google Scholar 

  9. Chiang, Y.-J., Mitchell, J.S.B.: Two-point euclidean shortest path queries in the plane. In: Proc. 10th ACM-SODA, Philadelphia, USA, pp. 215–224 (1999)

    Google Scholar 

  10. Djidjev, H.N.: Linear algorithms for graph separation problems. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 643–645. Springer, Heidelberg (1988)

    Google Scholar 

  11. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs. SIAM J. Comput. 16, 1004–1022 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. J. Algorithms 5, 391–407 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Har-Peled, S.: Approximate shortest paths and geodesic diameters on convex polytopes in three dimensions. DCG 21, 216–231 (1999)

    MathSciNet  Google Scholar 

  14. Har-Peled, S.: Constructing approximate shortest path maps in three dimensions. SIAM J. Comput. 28(4), 1182–1197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aleksandrov, L., Djidjev, H.N., Guo, H., Maheshwari, A., Nussbaum, D., Sack, JR. (2006). Approximate Shortest Path Queries on Weighted Polyhedral Surfaces. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_9

Download citation

  • DOI: https://doi.org/10.1007/11821069_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics