
Dimensions of Composition Models for
Supporting Software Evolution�

In-Gyu Kim1, Tegegne Marew2, Doo-Hwan Bae2,
Jang-Eui Hong3, and Sang-Yoon Min4

1 Telecommunication R & D Center, Telecommunication
Network Business, Samsung Electronics, Co. Ltd., Suwon, Korea

igkim.kim@samsung.com
2 Dept. of Electrical Engineering & Computer Science, KAIST,

373-1, Guseong-dong, Yuseong-gu, Daejon 305-701, Korea
{tegegnem, bae}@se.kaist.ac.kr

3 School of Electrical & Computer Engineering, CBNU,
12, Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea

jehong@chungbuk.ac.kr
4 SOLUTIONLINK, KAIST Venture Incubator

373-1, Guseong-dong, Yuseong-gu, Daejon 305-701, Korea
sang@sol-link.com

Abstract. Software systems with constrained and dynamic environ-
ments need to adapt to local and diverse computing environments by
providing highly customized services at run-time. In order to address
such dynamic changes effectively, composition models addressing com-
plicated composition issues and supporting advanced composition fea-
tures are required. In order to analyze and identify the required features
of composition models supporting dynamic changes, we propose the di-
mensions of composition models by survey and analysis of existing work.
Based on the dimensions, it is possible to provide a road map to im-
prove capability of a composition model for a specific domain such as a
dynamic mobile agent domain.

1 Introduction

An important emerging requirement for software systems is the ability to address
dynamic requirements changes. As the competitions among enterprises become
fiercer, there is a need for each enterprise to satisfy the time-to-market require-
ment faster. In addition, the spread of the Internet and mobile communications
with constrained devices requires software systems (e.g. mobile agent systems)
to adapt to local and diverse computing environments by providing highly cus-
tomized services at run-time.

Composition based techniques are practical and effective approaches for sup-
porting software evolution because of high flexibility and increased productivity.
� This work was supported by the Ministry of Information & Communication, Korea,

under the Information Technology Research Center (ITRC) Support Program.

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 211–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

212 I.-G. Kim et al.

In this paper, we define compositional aspects of the techniques as composition
models. Composition models enable decisions to be made on how composition
units are composed and which functionality the composed one provides. Accord-
ing to the capabilities of composition models that applications are based on, the
ability of the applications to accommodate changes is decided. Thus, in order
to support software evolution more effectively, composition models addressing
complicated composition issues and supporting advanced composition features
are required. In this paper we propose dimensions of composition models in order
to analyze and identify the required features of composition models for evolv-
able software systems especially with dynamic requirements changes. Through
surveying existing work supporting software evolution and existing criteria for
comparing composition models, the dimensions are identified, collected, classi-
fied, and refined. Based on the dimensions, it is possible to find which areas
are not supported or need to be more supported in existing composition mod-
els and to provide a road map to improve composition model capability. The
dimensions also enable software developers to find out required features of a
composition model for a new application domain where computing conditions or
environments are different from other domains.

The remainder of this paper is organized as follows. Section 2 shows and
analyzes briefly some existing efforts and research projects supporting software
evolution. Section 3 collects and analyzes existing criteria related to comparing
composition models. Based on the analysis of Section 2 and 3, Section 4 proposes
dimensions of composition models and describes each dimension in detail. Section
5 compares some existing research projects by the proposed dimensions. As a case
study applying the proposed dimensions to a new domain to find out the required
features for effectively supporting software evolution in the domain, Section 6
shows how the dimensions can be used for choosing the required features for a
composition model supporting dynamic mobile agent applications. In Section 7
we conclude our research with further work.

2 Work Supporting Software Evolution

There exist techniques or research projects for supporting software evolution.
We have classified these efforts largely into 9 categories.1 The pros and cons
of each category are explained briefly in Table 1.2 Since our paper focuses on
dimensions of composition models, we are more interested in composition based
techniques (row 3 in Table 1). Some of efforts in the category (i.e. composition
based techniques) are explained in detail in the following.

As basic OO composition techniques, there are association, inheritance, and
delegation. Association is one of the simple composition techniques which has
been widely used in OO systems. It enables an object to refer to other objects, for
instance, by using object variables. In association, functionality can be changed
1 The classification is not mutually exclusive. Some efforts belong to more than one

category.
2 For more detailed information, [18] can be referred to.

Dimensions of Composition Models 213

Table 1. Comparison of Efforts Supporting Software Evolution In the Large

Efforts supporting Pros Cons
software evolution

any kind of adaptation, any part can requiring source code, error-prone,
Code Modification can be modified, direct modification, not suitable for large and

efficient for experienced programmers. complex systems.
Parameter controlled modification by parameters. limited modification within

Modification parameter scopes.
Composition producing and adapting software systems requiring various mechanisms to

Based Techniques fast and cost-effectively by (run-time) support composition.
[1,2,5,22,23] composition, high reuse of components.

Design Pattern providing general solutions for addressing hard to find exact patterns for
Based Techniques [12] software evolution problems. addressing given problems.

supporting high level modification by subjective to architectural styles,
Software Architecture changing components, connectors, or requiring further research on
Based Techniques [8] configuration. dynamic architecture supporting

software evolution.
Transformation as powerful as code modification, requiring source code,

Based Techniques supporting controlled modification by hard to modify at run-time.
[3,4] transformation templates.

supporting run-time change by modifying requiring mechanisms to support
Reflection meta data, used as complementing or meta-level architecture,

Based Techniques supporting techniques for many other complex to use.
[11,21] adaptation efforts.

Collaboration large granularity of reuse requiring further research on efficient
Based Techniques (collaboration-level), supporting realization of the concepts and

[16,27] separation of concerns. supporting mechanisms.
Industry providing various practical supporting not sufficiently providing component

Component Models tools for developing systems based on or composition models for adapting
[9,13] their own component models, easy to use. components or systems.

at run-time by changing the references. Class inheritance allows a subclass’s
implementation to be defined in terms of the parent class’s implementation [2,26].
The advantage of class inheritance is that it is done statically at compile-time
and is easy to use. The disadvantage of class inheritance is that the subclass
becomes dependent on the parent class’s implementation and the implementation
inherited from a parent class cannot be changed at run-time. Delegation is similar
to association except message handling mechanisms [2,20]. Using delegation, a
method can always refer to the original recipient of the message, regardless of
the number of indirections. Like association, delegation also supports dynamic
composition by changing parents at run-time.

Ostermann et al. propose compound references, a new abstraction for ob-
ject references, that allows to provide explicit linguistic means for expressing
and combining individual composition properties on-demand [22]. They provide
five composition properties to express a seamless spectrum of composition se-
mantics in the interval between object composition and inheritance: overriding,
transparent redirection, acquisition, subtyping, and polymorphism. A variety
of composition mechanisms can be used by simply decorating object references
with the above composition properties. A seamless transition from one composi-
tion mechanism to the other is also possible by changing composition properties,
which enables applications to be adapted to have the changed functionality.

214 I.-G. Kim et al.

Context relation is a relation between classes which directly models dynamic
evolution [23]. In Context relation, a context class defines a dynamic update for
a base class. Attaching a context object to a base object alters the base object’s
method table based on the class updates defined by the context class. Context
relation supports method-level updating.

HADAS is a decentralized framework for composition of software systems
by connecting components [5]. HADAS supports dynamic adaptation, which al-
lows for the adjustment of structure and behavior of autonomous components.
Each component is split into two sections; Fixed and Extensible. Data items
and methods defined in the Fixed section are not changed during the compo-
nent’s lifetime. In contrast, the Extensible section comprises the mutable por-
tion of the component through which component’s structure and behavior can
be changed, and in which new methods can be added or removed on-the-fly.
HADAS is based on 2-level method invocation mechanism which supports ex-
tensibility of the invocation mechanism itself. The mechanism partially enables
“supporting multi-services” by metainvocation. Added components can access
original components through “selfObject” construct. HADAS supports dynamic
adaptation and a hybrid approach to get benefits both from class-based and
instance-based changes.

DC-AOP is a platform for scalable mobile agents, which supports dynamic
composition of functionality using code mobility [19]. Kim et al. categorize func-
tionalities that mobile agents can use as follows: built-in functionality, resi-
dent functionality, carried functionality. Carried functionality enables mobile
agents to add functionalities in remote nodes into their behaviors by code mo-
bility and use the functionalities at run-time. DC-AOP supports such dynamic
composition of functionality by providing four language constructs for carried
functionality.

Lasagne defines a platform-independent architecture for dynamic customiza-
tion of component-based systems using wrappers [28]. Lasagne introduces the
concept of “Composition Policy”. In Lasagne, composition logic is externalized
from the code of clients, core system, and extensions by encapsulating it in a
composition policy. In Lasagne, an application consists of a minimal functional
core (implemented as a component-based system), and a set of potential ex-
tensions that can be selectively integrated within this core functionality. Each
extension (i.e. collaboration) is implemented as a layer of mixin-like wrappers,
simultaneously tailoring multiple components of the application and their inter-
actions between each other.

GenVoca is one of program transformation approaches. GenVoca generators
synthesize software systems by composing plug-compatible and interchangeable
components [4]. GenVoca components are parameterized program transforma-
tions that are capable of operation refinements. The interfaces and bodies of
GenVoca components are subjective (i.e. changeable). When components are
composed, GenVoca checks additional constraints (e.g. precondition and post-
condition) called design rules as well as type.

Dimensions of Composition Models 215

The CORBA Component Model (CCM) is a specification for creating server-
side scalable, language-neutral, transactional, multi-user, and secure enterprise-
level applications [13]. In CCM, components support a variety of interaction
features, called ports. The ports includes facets, receptacles, and event sources/
sinks. A component can provide multiple object references, called facets, which
are capable of supporting distinct IDL interfaces. Using facets, operations can
be grouped. In addition, introspection facilities associated with facets permit
one to discover the set of roles provided by a component type at run-time.
Other component models such as EJB ([9]) provide similar functionalities for
component customization, composition, evolution, and deployment.

3 Existing Dimensions for Comparing Composition
Models

This section presents and analyzes existing criteria used to compare composition
models. Bosch proposes superimposition, a novel black-box adaptation technique
that allows one to impose predefined, but configurable types of functionality
on a reusable component [6]. He identifies the requirements that component
adaptation techniques should fulfill; “transparent”, “black-box”, “composable”,
“configurable”, and “reusable” requirements. Some of these requirements are
useful to identify dimensions of composition models. For example, “composable”
requirement implies that the adapted component should be as composable as
it was without the adaptation and the adaptation should be composable with
other adaptations. In addition, Bosch focuses on configurable adaptation, which
is realized by a number of component adaptation types that can be configured
for the specific component.

Heineman et al. present a list of requirements necessary for component adap-
tation techniques from surveying and analyzing some existing work and con-
sidering three additional requirements [14]. Although some requirements such
as “identity” and “architectural focus” are useful as dimensions of composition
models, other requirements are not suitable directly for composition models. For
example, “conservative” requirement is based on the assumption that existing
functionalities of components are not cancelled. However, we think that composi-
tion of two components can make a combined component with less functionalities
than the sum of functionalities of two components.

Kniesel classifies component adaptation approaches according to four criteria
[20]. “anticipated or unanticipated changes” and “time” are important aspects
of composition models.

Buchi et al. provide requirements for a wrapping mechanism [7]. “shielding”,
one of the requirements, indicates that a wrapper should be able to control
whether clients can directly access the wrappee or not.

Dominick et al. provide concerns which are important for extensible and con-
figurable components [10]. “extensible and reusable extensions” concern means
that components can be plugged into components recursively. They think that
extensions (to components) also should have component-like properties.

216 I.-G. Kim et al.

Svahnberg et al. provide selection criteria of variability realization techniques
for selecting an appropriate technique for implementing variability [24]. They
realize variability in product line software systems through steps of identifying
variant features, introducing variation points for the features, populating the
variant feature with its variants (software entities), and binding variation points
with specific variants. They organize variability realization techniques into 13
types by using involved software entities and binding times. They compare the 13
types of variability realization techniques in detail by five criteria: introduction
times of variation points, open times for adding variants, ways of populating
collection of variants, binding times, ways of binding. The criteria are focused
to classify variability realization techniques especially for product line software
systems.

4 Dimensions of Composition Models

Based on the analysis of Section 2 and 3, we have identified, collected, classi-
fied, and refined dimensions of composition models. The dimensions and their
elements (features) are explained as follows:

Granularity: Granularity classifies composition units into attribute, method,
object, component, and collaboration. Collaboration is a set of objects, together
which provides a particular functionality to the application.

Composition Time: This dimension addresses when composition is performed.
This dimension has the following elements:

– compile-time: Composition is performed at compile-time or before (e.g. prod-
uct architecture derivation time [24]).

– deploy-time: Composition is performed at deploy-time.
– load-time: Composition is performed at load-time.
– run-time: Composition is performed at run-time.

These elements are cumulative: a later time element implies the previous time
elements. For example, run-time element implies load-time, deploy-time, and
compile-time elements.

Location of Delta: Where can we get “added functionality” (called as delta)
at run-time? This dimension is explained in more detail from [19].

– built-in: Delta is combined into original components at compile-time.
– local: Delta in the local node (computer) is used.
– remote: Delta can be loaded and combined from remote nodes.

Elements in this dimension are cumulative.

Required Composition Information: This dimension addresses what kinds
of information is necessary for composition.

Dimensions of Composition Models 217

– interface: It requires signature information (e.g. return type, name, parame-
ters).

– contract: Pre&post conditions and invariants are necessary [15].
– configuration: For advanced or flexible composition such as expressing vari-

ous composition semantics, more configurable composition information
should be provided explicitly and could be used and manipulated by com-
ponent customers. Explicit configuration information enables developers or
adapters to customize components to provide different behaviors by changing
the information.

Contract and configuration elements imply interface element unless explicit notes
are provided.

Consistency Checking when Composition: What kind of consistency check-
ing is performed when composing?

– signature: Signature checking is performed.
– subtype: Subtype checking is performed.
– rule: Composition rules are used for consistency checking.

Subtype element implies signature element. Usually, signature element is a min-
imal element to check.

Composition Capability: This dimension shows which composition seman-
tics can be provided after composition.

– adding new services (1)
– deleting existing services (2)
– changing services (3)
– supporting multi-services (4): When a message is received, multi-services can

be provided.
– overriding (5)
– wrapping (6)
– combinations (7): Combinations of composition primitives are supported. In

order to provide expressive and changeable composition semantics among
components, it is necessary to combine various composition operators and
provide various composition semantics through the combinations.

As a note, the numbers in parentheses for the above elements are for the refer-
ence in Table 2.

Reference Primitives: When a composition unit (let’s say it as a component)
is composed with other components, the reference scope of the other components
which the component can access is decided by reference primitives. Let’s assume
that two components, original and delta, are composed.

– origin (O): The delta component can access the original component.
– delta (D): The original component can access the delta component.

218 I.-G. Kim et al.

– identity (ID): The original and the delta are aggregated into one identity.
– based on internal structure information (ISI): This category is different from

the above three categories in that the reference scope can be decided by using
internal structure information of a component such as information of fixed
and extensible parts. For example, an internal component of a component can
access all internal components of the fixed part of the component by using
“fixed” reference primitive. Reference primitives belonging to this category
can be used to express more specific and various reference scopes other than
original and delta components.

Identity element (ID) implies both original (O) and delta (O).

Hierarchical Composition Support: This dimension decides whether com-
position can be applied hierarchically or not. It is important to raise the level of
abstraction in such a way that the evolution is expressed, reasoned about, and
implemented. One way of raising the level of abstraction is hierarchical compo-
sition. Hierarchical composition enables component composition to be applied
uniformly to both component adaptation and application assembly. It also en-
ables components to be adapted by other components and the adapted compo-
nents to be used for adapting other components as well. It increases reusability
by enabling components to play both the roles: original and delta.

Composable Parts: This dimension shows which parts of a system are allowed
to be composed.

– Whatever: Any part can be changed or composed.
– Designated parts: Only particular parts are allowed to be changed or com-

posed.

Anticipation: This dimension shows whether or not unexpected functionality
which original developers do not consider at design-time, can be added into
the software later by using the extension mechanism which is provided by the
supporting composition model.

– Expected: By using the supporting composition model, only expected func-
tionalities which are considered at design-time are allowed to be composable.

– Unexpected: By using the supporting composition model, unexpected func-
tionalities which are not considered at design-time can also be composed.

Who Provides Composition Codes?

– Manual (Developer): Composition logic is programmed by developers. In
this manual decision of composition, anticipated composition logic is coded
at compile-time and according to the fixed logic, compositions in software
systems are performed.

– Automatic (AI): Reasoning engine decides what to do at run-time (e.g. which
parts have to be composed and in which ways) by using inference rules
together with inputs from environments. Thus, composition logic can be
decided automatically at run-time by the reasoning engine.

Dimensions of Composition Models 219

5 Comparison of Existing Work by the Proposed
Dimensions

This section compares some of work presented in Section 2 by our proposed
dimensions in Section 4. The comparison results are shown in Table 2 and the
detailed comparison results with respect to each dimension are explained in the
following:

Table 2. Comparison of Software Composition Efforts by the Proposed Dimensions

Software Composition Efforts
Dimensions Context

HADAS DC-AOP Relation Lasagne GenVoca
Granularity of object
Composition (mainly focused object object collaboration collaboration
Units on methods) (extension)
Composition Time run run run run compile
Location of Delta local remote local local local
Required configuration
Composition interface interface interface (composition contract
Information policy)

rule
Consistency signature signature signature subtype (design rule
Checking checking)
Composition 1,2,4 1,2 1,2,3 6,7 1,6
Capability
Reference O,D D O ID O
Primitive
Hierarchical No Yes No No Yes
Composition

Part Part Part
Composable Part (Extensible (carried- (Instance- All All

part) functionality) based method)
Anticipation Expected Expected Expected Expected Unexpected
Who Manual Manual Manual Manual Manual

Granularity of Composition Units: HADAS can add and remove items
(data, methods, or objects). It mainly deals with methods. DC-AOP and Con-
text Relation are based on objects. Lasagne wraps a set of components with
extensions. GenVoca can compose collaborations of “realm”.
Composition Time: In HADAS, DC-AOP, Context Relation, and Lasagne,
composition is performed at run-time. GenVoca performs software composi-
tion at compile-time. Generally, compile-time composition enables better per-
formance because it does not require intermediate invocation layers. Run-time
composition enables flexible functionality change because it can change func-
tionality at run-time.

220 I.-G. Kim et al.

Location of Delta: Only DC-AOP enables remote functionalities to be loaded
and composed with existing functionalities.
Required Composition Information: In HADAS, DC-AOP, and Context
Relation, signature information is used for composition. Lasagne and GenVoca
require more information than signature. Lasagne describes components with
services (interfaces), dependencies, decorators (wrappers), and intercepters. At
run-time, Lasagne uses component descriptions and composition policy to com-
bine extensions into the core system selectively. GenVoca uses contract informa-
tion such as pre and post conditions.
Consistency Checking when Composition: HADAS, DC-AOP, and Con-
text Relation perform consistency checking at the level of signature; composition
is not allowed if signatures are not matched. Lasagne wraps components or uses
role object patterns to compose components and deltas. Thus, it requires sub-
type relation between components and deltas. GenVoca performs design rule
checking to detect illegal combinations of components.
Composition Capability: HADAS, DC-AOP, and GenVoca enable compo-
nents to provide new services. HADAS and DC-AOP can remove existing ser-
vices. Context Relation changes existing services using context objects. It also
adds new services which are only invoked by the attached context objects. Those
new services can be disposed by changing context objects. GenVoca can add
or wraps existing services. HADAS supports multi-services by metainvocation.
Lasagne supports wrapping of services and selective combination of extensions
by composition policy.
Reference Primitives: In HADAS, when two components are composed, one
component can access the other component through “selfObject” construct. Con-
text Relation has this primitive to access original components. It also has context
primitive for delta to access itself. However, it does not provide primitives for
delta to access original components. DC-AOP provides “cafInvoke()” method to
access deltas. However, it does not provide facilities to invoke original objects
which load the deltas. Lasagne provides the notion of component identity by
variation point. It uses inner primitive to access the aggregate of a component
instance and its decorating wrapper instances. Lasagne enables original com-
ponents and deltas to be combined into one identity. Component identity (ID)
implies that deltas can access the original component (O), the original compo-
nent can access deltas (D), and delta can access other deltas. In GenVoca, deltas
(upper layers) can access original components (lower layers).
Hierarchical Composition Support: In HADAS and Lasagne, deltas cannot
be extended by other deltas recursively. For example, in Lasagne, it is very
difficult to reuse deltas because they have subtype relation with original classes.
Context Relation also does not support hierarchical composition because context
classes are specified only for one base class. In DC-AOP and GenVoca, deltas
can be extended by other deltas recursively.
Composable Parts: In HADAS, each component has two parts; Fixed and
Extensible. Functionality in only “Extensible” part can be added or deleted.

Dimensions of Composition Models 221

In DC-AOP, only carried-functionalities of system can be changed through the
proposed language constructs. In Context Relations, instance-based methods
can be updated. In Lasagne, any services of components can be wrapped. In
GenVoca, any components can be composed.
Anticipation: In HADAS, DC-AOP, Context Relation, and Lasagne, develop-
ers of components have to anticipate adaptations which will be performed in
the future and also provide some ways (hooks) within the components to realize
the adaptations. In GenVoca, original developers do not have to anticipate fu-
ture adaptations. Adapters, instead of the original developers, perform necessary
adaptations. However, although GenVoca composes unanticipated functionality,
it is done before run-time. In order to satisfy fast-changing requirements more
fully, unanticipated adaptations should be supported at run-time as well as at
compile-time.
Who Provides Composition Codes?: In all work, the change is encoded
by the developers or adapters at compile-time. Specifically, in HADAS, DC-
AOP, Context Relations, and Lasagne, the change is encoded by developers. In
GenVoca, the change is encoded by adapters as well as developers.

6 Applying the Dimensions for Dynamic Mobile Agent
Applications

As a case study applying the proposed dimensions to a new domain, this section
shows how our proposed dimensions can be used to select the required features
of a composition model supporting dynamic mobile agent applications.

6.1 A Testing Mobile Agent with Dynamic Requirements Changes

As an application with dynamic requirements changes, a mobile agent applica-
tion is described as follows. A mobile agent, called as DTMA, navigates to various
nodes (e.g. insurance company web sites) where there are insurance components
differently implemented by various companies with their own business rules.
At each node, DTMA tests the insurance component provided at the node.
The goal of DTMA is to find the most reliable insurance component among
nodes. At various nodes, DTMA performs some testing activities. At a specific
node, it happens to test the insurance component in the node in more detail
because the insurance component has passed all testing activities of the current
DTMA. DTMA changes the existing testing functionality with a new testing
functionality which has more detailed test cases, and performs new testing ac-
tivities. Similarly, at another nodes, DTMA adds a new display functionality
which displays texts in well formatted forms, and adds a monitoring function-
ality which performs some backup activities. The above scenario is shown in
Figure 1.

222 I.-G. Kim et al.

node A

DTMA

navigate

(simple testing)

(hard testing) (new display forms)

(backup)

IC_A:
Insurance

Component

test

DTMA

DTMA

DTMA

node B

IC_B:
Insurance

Component

node C

IC_C:
Insurance

Component

node D

IC_D:
Insurance

Component

Fig. 1. A Navigating Scenario of DTMA

6.2 Required Features of a Composition Model for Dynamic Mobile
Agent Applications

For the above mobile agent application, DTMA can be programmed as having
all functionalities including testing, display, and monitoring functionalities at
compile-time. However, it requires more memory space and increased network
bandwidth when moving to other nodes. In addition, it cannot accommodate
unanticipated requirements such as a new secure communication functionality. In
order to address dynamic requirements changes in the mobile agent application
more sufficiently, a composition model suitable for the application should be
selected and used. In order to find out the required features of the composition
model, we used the proposed dimensions. As a result, we decided the following
features are required for the composition model:

Granularity of Composition Units: Component Based Software Develop-
ment (CBSD) enables applications to be developed fast and cost-effectively by
composing existing or customized components [25]. Also, CBSD is being con-
sidered as a practical and effective approach for supporting software evolution
because composing components provides high flexibility and productivity. Thus,
applications with dynamic requirements changes could get benefits from CBSD.
As a result, the composition unit for the composition model is decided as “com-
ponent”.
Composition Time: DTMA changes the existing testing functionality to a
newly developed testing functionality at run-time. In addition, DTMA adds a
newly developed other functionality (e.g. display) at run-time. Run-time com-
position is very useful for satisfying dynamic changes.
Location of Delta: It is possible for mobile agents to navigate in unexpected
environments. If mobile agents can add functionalities in remote nodes into their
behaviors by code mobility and use the functionalities at run-time, they can use
various and timely functionalities in the Internet with high robustness [19].
Required Composition Information: Components provide services through
interfaces. However, in order to address dynamic requirements changes in mobile

Dimensions of Composition Models 223

agents through component composition, (re)configurable composition informa-
tion should be explicitly provided. Through changing the information, compo-
nents can provide various behaviors. For example, let’s assume that DTMA
decides to move to an untrustworthy node. In order not to save travel informa-
tion into the node, DTMA can change internal configuration to limit access to
logging services.
Composition Capability: DTMA needs the following composition capabili-
ties:

– add new services (1): DTMA adds display and monitoring functionalities.
– delete existing services (2): DTMA could delete the existing functionality.
– change services (3): DTMA changes the testing functionality.
– change configuration information (7): DTMA can change its architectural

configuration information when it navigate to untrustworthy node. In ad-
dition, mobile agents move around nodes and perform some activities for
each node. Each node may have different environments or requirements such
as security levels and communication protocols. Thus, various composition
semantics should be supported by combinations of composition primitives.

Reference Primitives: In DTMA, existing functionalities need to access new
added functionalities (local or remote) and vice versa. In order to use different
kinds of internal parts of DTMA effectively, DTMA needs to support “based on
internal structural information” in this dimension.
Hierarchical Composition Support: If DTMA supports hierarchical com-
position, it will get the benefits of hierarchical composition such as increasing
reusability of components and managing different composition levels uniformly.
Consistency Checking when Composition: In DTMA, signature checking
is a minimum requirement. Subtyping checking is also necessary for hierarchical
composition. Configuration checking is also required.
Composable Parts: Mobile agents need to manage their parts differently ac-
cording to their goals. For example, one part has functionalities fundamental
and very unlikely to change, and the other part has dynamically changeable
functionalities. DTMA needs some basic functionalities such as a navigation
functionality to be fixed for its proper operation. In the other hand, DTMA
needs to use resources effectively because of limited memory space and network
bandwidth. Thus, DTMA also needs composable or changeable part.
Anticipation: The ability to compose unexpected functionality is required to
handle dynamic and diverse situations in mobile agent environments.
Who provides composition codes?: For the safe, reliable, and predictable
operation of DTMA, the composition logic needs to be specified by developers
explicitly.

The required features of a composition model for the dynamic mobile agent
application are shown in Figure 2. The circles shows the chosen features for the
composition model.

224 I.-G. Kim et al.

Composition
Time

Composition
Granularity

Location
of Delta

Required
Composition
Information

Consistency
CheckingReference

Primitives

Hierarchical
Composition

Composable
Part

attribute

method

object

collaboration

componentbuilt-in

local

remote

compile
deploy

load

run

interface
configuration

signature

subtype

rule

origin

delta

identity

hierarchical

whatever

no

part

internal
structural
information

contracts

Composition
Capability

add
delete

change
multi-services

overriding
wrapping

combination

AI

manual

Who

unexpected
expected

Anticipation

Fig. 2. Required features of a composition model for the dynamic mobile agent
application

7 Conclusion and Further Work

In order to analyze and identify the required features of a composition model for
software systems with dynamic requirements changes, we proposed the dimen-
sions of composition models by survey and analysis of existing efforts support-
ing software evolution, especially composition based techniques, and the existing
comparison criteria. The dimensions could be useful in the following areas:

– Existing work addressing dynamic requirements changes can be analyzed in
various ways as shown in Section 5.

– The dimensions help to identify issues critical to improving composition
capability of existing work.

– Future research directions of a specific dimension can be identified.
– When making a new composition model suitable for a specific domain such

as [17], we can use, as a road map, the dimensions.

As experiments of our dimensions, first, we compared some existing software
composition efforts by using the dimensions. Second, we identified the required
features of a composition model supporting a dynamic mobile agent application
by using our dimensions. Also, we have developed APIs for the composition
model and implemented the application. For more information, please refer to
“http://salmosa.kaist.ac.kr/˜igkim/DCM”.

While our research offers improvement in dimensions of composition models,
there are some issues that are worth talking about in further research. First, it

Dimensions of Composition Models 225

is useful to apply the proposed dimensions to various domains in order to extend
the dimensions with additional features or to further refine the dimensions. We
are now applying the dimensions to a hotel reservation system with continuous
upgrades and changes of business requirements. Second, relations among the di-
mensions need to be analyzed and specified explicitly. Some of the dimensions
could affect each other. They could be refined into more orthogonal dimensions,
or the relations among them should be specified explicitly, for example, in doc-
uments. Finally, it is useful to identify relations between the dimensions and
software quality attributes such as performance, reusability, and modifiability.
For example, for modifiability, “Required Composition Information” has a higher
priority than “Location of Delta”. Such relations are useful to identity impor-
tant dimensions that composition models should have in order to satisfy certain
quality attributes or goals.

References

1. W. Aalst. “Don’t go with the flow: web services composition standards exposed”.
IEEE Intelligent Systems, 18(1):72–76, 2003.

2. M. Abadi and L. Cardelli. A Theory of Object. Springer, 1996.
3. U. Abmann. Invasive Software Composition. Springer, 2003.
4. D. Batory and B. Geraci. “Composition Validation and Subjectivity in GenVoca

Generators”. IEEE Transactions on Software Engineering, 23(2):67–82, 1997.
5. I. Ben-Shaul, O. Holder, and B. Lavva. “Dynamic Adaptation and Deployment of

Distributed Components in Hadas”. IEEE Transactions on Software Engineering,
27(9):769–787, 2001.

6. J. Bosch. “Superimposition: A Component Adaptation Technique”. Information
and Software Technology, 41(5):257–273, 1999.

7. M. Buchi and W. Weck. “Generic Wrappers”. In Proceedings of ECOOP, pages
201–225, June 2000.

8. S. Cheng, D. Garlan, B. Schmerl, J. Sousa, B. Spitznagel, P. Steenkiste, and N. Hu.
“Software Architecture-base Adaptation for Pervasive Systems”. In Proceedings of
the International Conference on Architecture of Computing Systems: Trends in
Network and Pervasive Computing, pages 67–82.

9. L. DeMichiel, L. Yalcinalp, and S. Krishnan. Enterprise JavaBeansTM Specifica-
tion, Version 2.0. Technical report, Sun Microsystems, 2001.

10. L. Dominick and K. Ostermann. “Supporting Extension of Components with new
Paradigms”. In Workshop on Advanced Separation of Concerns at OOPSLA, 2000.

11. J. Dowling and V. Cahill. “The K-Component Architecture Meta-Model for Self-
Adaptive Software”. In Proceedings of the Third International Conference on Met-
alevel Architectures and Separation of Crosscutting Concerns, LNCS 2129, pages
81–88.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

13. O. M. Group. CORBA Components, v3.0 full specification. Technical report,
OMG, 2002.

14. G. Heineman and H. Ohlenbusch. An Evaluation of Component Adaptation Tech-
niques. Technical report, Computer Science Department, Worcester Polytechnic
Institute, 1999.

226 I.-G. Kim et al.

15. R. Helm, I. Holland, and D. Gangopadhyay. “Contracts: Specifying Behav-
ioral Compositions in Object-Oriented Systems”. In Proceedings of the OOP-
SLA/ECOOP Conference), pages 169–180, 1990.

16. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. “Aspect-Oriented Programming”. In Proceedings of ECOOP, 1997.

17. I. Kim and D. Bae. “A Dynamic Composition Model for Addressing Constrained
Environments”. In OOPSLA Workshop on Reuse in Constrained Environments,
2003.

18. I. Kim and D. Bae. Dimensions of Composition Model for Supporting Software
System Evolution. Technical report, Department of Computer Science, KAIST,
2005.

19. I. Kim, J. Hong, D. Bae, I. Han, and C. Yoon. “Scalable Mobile Agents Supporting
Dynamic Composition of Functionality”. In Infrastructure for Agents, Multi-Agent
Systems, and Scalable Multi-Agent Systems, T. Wagner and O. Rana, eds., LNAI
1887, pages 199–213, 2001.

20. G. Kniesel. “Type-Safe Delegation for Run-Time Component Adaptation”. In
Proceedings of ECOOP, pages 351–366, 1999.

21. P. Maes. “Concepts and Experiments in Computation Reflection”. In Proceedings
of OOPSLA), pages 147–155, 1987.

22. K. Ostermann and M. Mezini. “Object-Oriented Composition Untangled”. In
Proceedings of OOPSLA, pages 283–299, 2001.

23. L. Seiter, J. Palsberg, and K. Lieberherr. “Evolution of Object Behavior Using
Context Relations”. IEEE Transactions on Software Engineering, 24(1):79–92,
1998.

24. M. Svahnberg, J. Gurp, and J. Bosch. “A taxonomy of variability realization
techniques”. Software Practice and Experience, 35(8):705–754, 2005.

25. C. Szyperski. Component Software - Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

26. A. Taivalsaari. “On the Notion of Inheritance”. ACM Computing Surveys,
28(3):438–479, 1996.

27. P. Tarr, H. Ossher, W. Harrison, and S. Jr. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns”. In Proceedings of ICSE, pages 107–119,
1999.

28. E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Jorgensen. “Dynamic
and Selective Combination of Extensions in Component-Based Applications”. In
Proceedings of ICSE, pages 233–242, 2001.

	Introduction
	Work Supporting Software Evolution
	Existing Dimensions for Comparing Composition Models
	Dimensions of Composition Models
	Comparison of Existing Work by the Proposed Dimensions
	Applying the Dimensions for Dynamic Mobile Agent Applications
	A Testing Mobile Agent with Dynamic Requirements Changes
	Required Features of a Composition Model for Dynamic Mobile Agent Applications

	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

