
K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 281 – 300, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Catching and Identifying Bugs in Register Allocation

Yuqiang Huang†, Bruce R. Childers†, and Mary Lou Soffa‡

† Department of Computer Science
University of Pittsburgh

Pittsburgh, Pennsylvania 15260
{yuqiangh, childers}@cs.pitt.edu

‡ Department of Computer Science
University of Virginia

Charlottesville, Virginia 22904
soffa@cs.virginia.edu

Abstract. Although there are many register allocation algorithms that work
well, it can be difficult to correctly implement these algorithms. As a result, it is
common for bugs to remain in the register allocator, even after the compiler is
released. The register allocator may run, but bugs can cause it to produce incor-
rect output code. The output program may even execute properly on some test
data, but errors can remain. In this paper, we propose novel data flow analyses
to statically check that the output code from the register allocator is correct in
terms of its data dependences. The approach is accurate, fast, and can identify
and report error locations and types. No false alarms are produced. The paper
describes our approach, called SARAC, and a tool, called ra-analyzer, that stati-
cally checks a register allocation and reports the errors it finds. The tool has an
average compile-time overhead of only 8% and a modest average memory
overhead of 85KB.

1 Introduction

One of the most critical compiler transformations is register allocation, as a good al-
locator can make a dramatic difference in obtaining good performance [4, 11]. One
study even reported that careful register allocation makes one order of magnitude dif-
ference in performance [26]! Thus, considerable effort has been given to developing
new allocation algorithms or variants of existing ones [2-7, 11, 12, 24, 26, 28, 30].
Given the many algorithm variants and the complexity of modern architectures, im-
plementing register allocation is often a complex and error prone task. Particularly, it
is difficult to detect and locate bugs in an erroneous output of the allocator if the code
runs to completion. Some efforts [13, 18, 21] have proposed techniques to ensure the
allocator’s implementation is correct. In this paper, we describe a novel technique to
check the correctness of register allocation and also to report the bugs. This technique
is useful throughout the lifetime of a compiler, particularly during the development
period.

Although a compiler undergoes much testing, bugs in the register allocator often
slip past regression tests and are reported after release. What is worse is that many of
these bugs cause the compiler to fail on some input programs, but not on others. The

282 Y. Huang, B.R. Childers, and M.L. Soffa

generated code may have bugs, although the compiler did not crash. Such latent bugs
will not be discovered until a particular test input causes the program to fail. Assum-
ing that a test input catches the bug, the developer is likely to believe that the bug is in
the program itself, rather than the compiler. She will spend much time and effort
tracking down the bug to only discover that it is in the compiler and cannot be readily
fixed. All of this leaves the developer in the unfortunate situation of having little con-
fidence in the correctness of the generated code because bugs may remain even after
testing.

The research community has recognized the difficulty of implementing compiler
optimizations including register allocation and has proposed techniques to address the
situation. Necula et al. [21] proposed a symbolic evaluation approach to check the al-
locator’s output against the input. However, this approach reports false alarms and has
four times compile-time overhead. Jaramillo et al. [13] proposed a dynamic checking
approach that runs the allocator’s input and output code. Then it compares the corre-
sponding values to check that they are the same. However, it does not guarantee the
correctness of the allocator’s output unless all paths are exercised by test inputs.

In this paper, we propose a new approach, called SARAC, that uses static analy-
sis to check the correctness of the allocator’s output. SARAC reports the location
and type of an error in the output due to an incorrect allocation. The analysis checks
that the data flow semantics of the output match the semantics of the input. It trav-
erses all program paths, using data flow analysis to gather information about the
output. It then checks correctness using the gathered information. A checking step
verifies that the data dependences of the input code are preserved in the output
code, once the allocator has assigned registers and possibly spilled registers. The in-
formation collected during the analysis is used to determine error types and loca-
tions. Identifying errors in the dependences is a first step towards a complete tool
for checking and reporting bugs.

Our approach does not produce false alarms and gives hints to the compiler engi-
neer to help her diagnose and fix bugs in the allocator. Our analysis does not rely on
knowledge about the allocator implementation; it can be used with different register
allocation algorithms, including those that perform coalescing and rematerialization.
It uses data flow techniques and can be easily implemented. Such independence from
the register allocator suggests that a single error analysis tool can be built and em-
ployed for different allocators (in different compilers and target machines). Finally,
the approach has minimal performance and memory overhead, making it efficient and
practical. A prototype tool, called ra-analyzer, that implements SARAC has an aver-
age compile-time overhead of 8% and an average memory requirement of 85 KB.

This paper makes several contributions:

• A new way (SARAC) to statically check the correctness of a register allocator
implementation and to identify and report the location and type of bugs, inde-
pendently of the register allocator; no false alarms are generated.

• Techniques to support register allocators that perform coalescing, remateriali-
zation and sub-register class allocation.

• The treatment of the register allocator as a black box. SARAC supports many
allocator extensions, including live range splitting, interference region spilling,
web splitting, spill coalescing, spill propagation and spill coloring.

 Catching and Identifying Bugs in Register Allocation 283

• A tool (ra-analyzer) that implements SARAC in SUIF’s back-end optimizer
(MachSUIF [29]) for the Intel IA-32.

• An evaluation of ra-analyzer’s performance and memory overhead.

The next section describes how allocation preserves the semantics of the input
code. The third section presents algorithms for gathering and using data flow informa-
tion to check for correctness. The fourth section evaluates ra-analyzer. The fifth sec-
tion discusses related work and the final section concludes and describes future work.

2 Register Allocation

This section describes the motivation and background for our static analysis to catch
and identify register allocation errors. To provide focus, we make several reasonable
assumptions about the allocator. We assume that the allocator is not integrated with
other optimizations (e.g. instruction scheduling) [3, 24], and it does not change the
control flow graph, as is typical for register allocators. Initially, we assume a register
allocator that does only allocation — e.g., it does not do coalescing or rematerializa-
tion. We also do not show address calculations. In a later section, we discuss how
coalescing, rematerialization, sub-register class allocation and addresses can be incor-
porated. Lastly, we assume that the input code to the allocator is correct since we ad-
dress register allocation errors.

When assigning locations (registers or memory) to hold values (variables or tem-
poraries), a register allocator (e.g., on a RISC-style machine) can make only certain
edits to the input code. One edit can change an input statement’s operand to a hard-
ware register. Another edit is to insert store/load statements. A copy through a register
might also be introduced. The edits take into account the data type and the target ma-
chine. For example, a floating point (FP) register should be used to hold a FP value
and the appropriate register assignment made to a FP statement. Some target ma-
chines may require that specific hardware registers be used for certain operations. In
this case, the register allocator has to ensure that its edits (and assignment) conform to
the architectural constraints.

Figure 1 provides a running example, which counts the number of integer divisors
for some number, n. The allocator’s input and output are shown in RTL notation [9].
RTL is a standard low level intermediate code representation used in various
compilers (e.g., GNU gcc [10] and VPO [1]). In RTL, r[n] is used to represent
register n and M[loc] is used to represent memory location loc. For example, r[1]
is register 1 and M[c] is the memory location for variable c. A load is shown as
r[n]=M[loc] and a store as M[loc]=r[n]. A register-to-register copy is shown as
r[n]=r[m]. Although our technique is not tied to a particular intermediate
representation.

In the example, we assume that r[1] is assigned by the allocator to hold variable
n, and r[2] is used to hold the other variables as necessary. However, two wrong
allocation edits are made as shown in the incorrect output. The first wrong edit
occurs at code point 8, where the wrong register has been assigned to the second
source operand of the statement. The other incorrect edit is located at code point 12,
where the wrong destination operand is used for the spill. The example also shows

284 Y. Huang, B.R. Childers, and M.L. Soffa

the locations where the errors are manifested. The location where an error is
manifested is not necessarily the location where the wrong edit is made. For
example, the erroneous edit at 12 is manifested as error 2 and 3 at code point 11 and
14, respectively.

2.1 Data Flow Semantics and Register Allocation

A semantically correct allocation of registers must preserve the input code’s
semantics, particularly the data dependences. Thus, variable and temporary definition
and use pairs (“du-pairs”) in the input should be maintained in the output. We define a
“du-pair” notationally as (p.x=,q.=x), where the definition of the variable or
temporary x at code point p reaches the use of x at q. A code point is a label on a
statement in the input or output. For example, in the allocator’s input of Figure 1, the
variable c is defined at code point 1 and used at code point 6, giving the du-pair
(1.c=,6.=c).

Source Code Input to Allocator

/*count number of divisors
to variable n that is
passed as an argument*/
c=0;
for (d=1; d<=n; d++) {
if (n%d == 0)
c++;
}

1:c=0;
2:d=1;
3:PC=((n<=0)?L3:PC+4);
L1:
4:t=n%d;
5:PC=((t!=0)?L2:PC+4);
6:c=c+1;
L2:
7:d=d+1;
8:t=d<=n;
9:PC=((t==1)?L1:PC+4);
L3:

Correct Output from Allocator Incorrect Output from Allocator
1:r[1]=M[n];
2:r[2]=0;
3:M[c]=r[2];
4:r[2]=1;
5:M[d]=r[2];
6:PC=((r[1]<=0) ? L3:PC+4);
L1:
7:r[2]=M[d];
8:r[2]=r[1]%r[2];
9:PC=((r[2]!=0)?L2:PC+4);
10:r[2]=M[c];
11:r[2]=r[2]+1;
12:M[c]=r[2];
L2:
13:r[2]=M[d];
14:r[2]=r[2]+1;
15:M[d]=r[2];
16:r[2]=r[2]<=r[1];
17:PC=((r[2]==1)?L1:PC+4);
L3:

1:r[1]=M[n];
2:r[2]=0;
3:M[c]=r[2];
4:r[2]=1;
5:M[d]=r[2];
6:PC=((r[1]<=0) ? L3:PC+4);
L1:
7:r[2]=M[d];
8:r[2]=r[1]%r[1]; err1: wrong reg
9:PC=((r[2]!=0) ? L2:PC+4);
10:r[2]=M[c];
11:r[2]=r[2]+1; err2: stale (c)
12: M[d]=r[2]; wrong store(causes

err2,3)
L2:
13:r[2]=M[d];
14:r[2]=r[2]+1; err3: eviction (d)
15:M[d]=r[2];
16:r[2]=r[2]<=r[1];
17:PC=((r[2]==1) ? L1:PC+4);
L3:

Fig. 1. Example source, input to register allocator, correct and incorrect output code

 Catching and Identifying Bugs in Register Allocation 285

After register allocation, there is not necessarily a one-to-one correspondence
between the input du-pairs (involving variables and temporaries) and the output du-
pairs (involving registers and memory locations). The allocator can insert loads, stores
or copies to move values between the registers and memory. The output correspon-
dence of an input du-pair is termed a “du-sequence”:

A du-sequence (s.d=, ..., t.=u) is a chain of du-pairs such that d holds the value
v at s, u holds the same value v at t, and there is a connected chain of du-pairs
starting at s and ending at t that can register copy, load, or store the value v.

A du-sequence can perform a number of moves; a typical du-sequence has no moves
or one store and reload. For example, there is du-sequence (2.r[2]=,

3.M[c]=r[2],10.r[2]=M[c],11.=r[2]) in the correct output of Figure 1. The
notation 3.M[c]=r[2] shows a store at code point 3. Similarly, 10.r[2]=M[c]
shows a load at 10.

When the allocator correctly maintains the data flow of the input, each input du-
pair has a corresponding output du-sequence, where the start of the du-sequence maps
to the definition in the du-pair and the end of the du-sequence to the use of the du-
pair. Thus, a combination of propagation and substitution is used to recover the du-
pair from the du-sequence. For example, in Figure 1 the correct output code points 2
and 11 map to input code points 1 and 6, and 2.r[2]= corresponds to 1.c= and
11.=r[2] to 6.=c. Hence, the input du-pair (1.c=,6.=c) corresponds to the du-
sequence (2.r[2]=,3.M[c]=r[2],10.r[2]=M[c],11.=r[2]). The input du-
pair can be recovered by propagation and substitution as shown in the steps:

1. (2.r[2]=,3.M[c]=r[2],10.r[2]=M[c],11.=r[2]) // Initial du-sequence
2. (2.r[2]=,10.r[2]=r[2],11.=r[2]) // After propagation of r[2]
3. (2.r[2]=,11.=r[2]) // After propagation of r[2]again
4. (1.c=,6.=c) // Final du-pair after c was substituted for r[2]

When a use has multiple reaching definitions, all defined values need to be in the
same register (or memory location) before the use. For example, the use 6.=c has the
reaching definitions 6.c= and 2.c= in the allocator’s input of Figure 1. These are
maintained in the correct output as (11.r[2]=,12.M[c]=r[2],10.r[2]=M[c],
11.=r[2]) and (2.r[2]=,3.M[c]=r[2],10.r[2]=M[c],11.=r[2]).

Thus, the input and output have the equivalent data flow semantics if and only if
the input’s du-pairs can be recovered from the output’s du-sequences. Hence, we use
the “recovery” process to check the correctness of an allocation. Because of the
"recovery" process, there are no false positive for our techniques.

2.2 Sources of Errors

A bug in the allocator that causes the output program to crash or produce a wrong
result (but not the compiler) is manifested through incorrect code edits that can be
made by the allocator. For a register allocator, the incorrect edits are:

1. incorrect register assignment: the wrong register is used for an operand;
2. wrong store or load: a value is stored or loaded incorrectly (the store or load

may be redundant or it may use the wrong memory address for a variable or
temporary);

286 Y. Huang, B.R. Childers, and M.L. Soffa

3. missing store or load: a value is not spilled or reloaded when needed;
4. wrong register type: the wrong type is used (e.g., a load-byte statement is used

when a load-word statement is needed);
5. constraint violation: specific architectural constraints are violated.

These edits can violate the semantics of the input code and affect data
dependences. The first three edits can cause the du-sequences in the output code to
have no correspondence with the input du-pairs. These incorrect edits can challenge
the compiler engineer to detect. We focus on these edits as an important and
necessary step to catch and report bugs in an allocation. Both the wrong register type
and constraint violation edits usually preserve the correct data dependence. Our
algorithms can be extended to automatically check these using a linear inspection of
the input and output.

An incorrect edit can lead to errors in the program. An error happens when a du-
pair in the input cannot be recovered from the allocator’s output. We define an error
as a violation of the input code’s data flow. Note the distinction between an “incorrect
edit” and an “error”: An incorrect edit is the cause of an error. The incorrect edit
defines where something was done wrong to the code, but it is not necessarily the
code point where the error is exposed. An incorrect edit may not manifest itself as an
error until a value affected by the edit is used. For instance, in Figure 1 the wrong edit
at code point 12 is not exposed until code points 11 and 14. In fact, an incorrect edit
can be made that does not cause an error in the program. For example, when a
duplicate load is inserted, it may do no harm in terms of the program’s data flow. Our
concern is incorrect edits that cause the program to fail—crashing or computing a
wrong value—by disobeying the input code’s data flow.

The incorrect edits can lead to three error types: stale value error, wrong operand
error, or eviction error. Although these errors all involve data flow, we distinguish
between them to report causal information about what went wrong. A stale value
error happens when referring to a register or memory location that holds an old
version of the needed value. A wrong or missing store is a common cause. For
example, the incorrect output of Figure 1 shows that the wrong store is generated and
that r[2] is spilled to M[d], rather than to M[c]. Thus, there is no du-sequence for c
along the loop back edge that reaches the use at code point 11. Consequently, a stale
value for c is used. Equivalently, the input du-pair (6.c=,6.=c) cannot be recovered.
A wrong operand error occurs when referring to a register or memory location that
does not hold the needed value at all. The value is actually held in some other
location(s). This error is usually caused by an incorrect register assignment. An
eviction error occurs when referring to a value that is not held in any location at all.
This error is usually caused by an wrong store. Figure 1 shows examples for both
wrong operand and eviction errors.

3 Error Analysis for Register Allocation

To find register allocation errors, we develop a technique, called SARAC (Static and
Automatic Register Allocation Checking) that includes mapping generation and data
flow analysis. The technique implicitly and efficiently gathers information about the

 Catching and Identifying Bugs in Register Allocation 287

SARAC(input,output) {
 Map map = mapGen(input,output); // Step 1: mapping generation
 Dataflow sets = defAnalysis(map,output); //Step 2: dataflow analysis
 errAnalysis(output,map,sets); //Step 2: check the allocation
}

Fig. 2. SARAC steps

du-pairs and du-sequences to ensure that the du-pairs in the allocator’s input code
match the du-pairs recovered from the du-sequences in the allocator’s output code. As
most register allocators operate at the procedural level, SARAC uses the code
generated for a procedure. The technique is also applicable to local register allocation
and can be extended to interprocedural register allocation [28].

The three steps of SARAC are shown in Figure 2. First, mapping information is
generated using the allocator’s input and output. Then, iterative forward data flow
analysis, called defAnalysis, is performed on the output using mapping
information. This analysis collects three types of data flow sets needed to check the
correctness of the output and report error locations and types. Finally, a linear scan,
called errAnalysis, exposes def-use violations.

3.1 Step 1: Mapping Generation (mapGen)

SARAC needs to know which value (of the original operand) in the input is actually
defined/used by the output. Therefore, a mapping or association is determined that
relates an operand in the output to its corresponding operand in the input. Intuitively,
a location (register or memory) in the output is mapped to the corresponding
value(variable or temporary) in the input. A mapping can also relate constants in the

mapGen(input,output) {

 Map map := ∅;
 // get blocks in same order for traversal
 Blocks Bin[] := canonicalOrder(input);
 Blocks Bout[] := canonicalOrder(output);
 Block Bi := Bin.getNextElement();
 Block Bo := Bout.getNextElement();
 while (Bi≠null) {
 // create maps for stmts in input and output
 foreach Statement Si∈Bi {
 Statement So := find(Si, Bo);
 if (So≠null)
 // map all (*) opers in So to opers in Si
 map := map∪{So.*→Si.*};
 }
 Bi := Bin.getNextElement();
 Bo := Bout.getNextElement();
 }
 return map;

}

Fig. 3. Pseudocode for mapping generation

288 Y. Huang, B.R. Childers, and M.L. Soffa

output and input. Mappings are generated for all necessary statements, including
statements in the function prologue and epilogue. For load, store or register copy
statements injected by the allocator, there is no corresponding statement in the input.
Thus, no mapping is generated for these statements. For each of the other statements
in the output code, there is a corresponding statement in the input.

As shown in Figure 3, mapGen generates mappings based on the allocator’s input
and output, where the allocator is viewed as a black box. First, the basic blocks in the
input and output code are put in a canonical order. Next, the input blocks are
traversed. For each input statement, the corresponding output statement (if present) is
found in a basic block by find. Finally, the operands in the output statement are
mapped to operands in the input statement. In the figure, the notation “*” means
“any” (e.g., all operands). Although a mapping includes information about statement
and operand number, an abbreviation (e.g., location→value) is used in the paper. For
example, the output code in Figure 1 has statement r[2]=0 corresponding to the
input statement c=0. Thus, the mappings are r[2]→c and 0→0.

3.2 Step 2: Data Flow Analysis (defAnalysis)

To check if the register allocation is correct and to determine error locations and
types, defAnalysis needs to gather information about the behavior of the register
allocator using the output code and the mappings. defAnalysis gathers three types
of information at all points in the program: (1) the values that are currently held in
locations (registers and memory), (2) the stale values and (3) the evicted values. Note
if we only wanted to know if a register allocation is correct, we would not need the
eviction information. We develop a data flow algorithm to gather the information by
using the mappings to get the values in the input code associated with locations in the
output code. For example, when r[2]=1 at output code point 4 in Figure 1 is
processed, the original destination operand d is retrieved from the mappings. This
gives three pieces of information. First, the current value of d is defined in r[2].
Second, the value c in r[2] is evicted. Finally, any previous values of d in other
locations become stale.

These three types of information are collected in three data flow sets — the
Location set (L), Stale set (ST) and Eviction set (E). Each set consists of triples <l, v,
c>, where l is a location (register or memory) from the output code, v is a value
(name) from the input code or another location from which the value can be found,
and c is a vector consisting of a series of code points where the relationship between l
and v occurred. Thus, the semantics of <l, v, c> for L, ST and E are defined as
follows.

• L records the fact that location l holds v. The vector c records the du-sequence
for v (as a series of code points involved in the sequence).

• ST records that location l holds a stale v due to a series of code points in c,
where a value has been killed because of a new defintion at the start of that
series.

• E records that v has been evicted from location l at a statement in c. For E, c is
always a vector with a single element.

 Catching and Identifying Bugs in Register Allocation 289

3.2.1 Data Flow Equations
A statement S in the output code can either be a statement passed from the input with
registers assigned or a copy statement introduced by the register allocator. We use O
to represent original statements and ld to represent the destination of the statement in
the output code. We use C to represent copy statements. A copy statement is either a
load, store or register copy inserted by the allocator. Thus, S has the formats:

O: ld = exp {original statement} or C: ld = ls {copy statement}

We now describe each set’s Gen, Kill, IN and OUT. In a basic block, each set’s IN
for a statement is its OUT from the immediately preceding statement. The merge
points are described separately for each set. The three sets are computed in the same
phase.

Our data flow equations extend the traditional data set operations mostly because
of the third element of the triple, c, which is an ordered set. The elements of c are a
set of code points that are used to compute the du-sequence as data flow proceeds. We
redefine ∩ and – to handle the set c. We also define other operators to propagate the
value along du-sequences and to produce a new triple.

Definition of ∩:

l v c, ,〈 〉 l′ v ′ c ′, ,〈 〉∩
l v c, ,〈 〉 l′ v′ c′, ,〈 〉,{ } if l==l′ v== v ′ c c ′≠∧ ∧

l v c, ,〈 〉 if l==l′ v==v′ c==c ′∧ ∧
∅ otherwise⎩

⎪
⎨
⎪
⎧

=

Definition of –:

l v c, ,〈 〉 l′ v′ c′, ,〈 〉–
∅ if l==l′ v==v′∧

l v c, ,〈 〉 otherwise⎩
⎨
⎧

=

These two operators are similar to the normal set operators on the first two
elements in the triple. The third element c is handled in a special way.

Computing the Location Set (L)

L_gen[S]
ld v S〈 〉, ,〈 〉 if S O∈ ld v→∧

ld ls S〈 〉, ,〈 〉 if S C∈⎩
⎨
⎧

=

There are two cases for L_gen[S]. The first case occurs when a statement S in O
defines a new value in ld. The location ld must be mapped to a value v. Therefore, a
triple “<ld, v, <S>>” is generated. For example, when r[2]=1 at code point 4 in
Figure 1 is processed, a triple “<r[2], d, <4>>” is generated. The second case
happens to a statement S in C, which does not define a new value but copies a value.
The value to copy is in ls. “<ld, ls, <S>>” is generated to indicate that the value will be
found at ls when applying the value propagation. For example, when M[d]=r[2] at
code point 5 in Figure 1 is processed, a triple “<M[d], r[2], <5>>” is generated to
show that the value in M[d] can be found from r[2].

L_kill[S] considers that the execution of S destroys the value in ld:

L_kill[S] ld * *, ,〈 〉=

290 Y. Huang, B.R. Childers, and M.L. Soffa

This Kill computes the triple indicating any value held in the destination of S.
For the value propagation (i.e., collapsing C statements in a du-sequence), the

operator ⊕ is defined.

Definition of ⊕:

l′ v′ S1 … Si, ,〈 〉, ,〈 〉 l v S〈 〉, ,〈 〉⊕
l v S〈 〉, ,〈 〉 if S O∈
l v ′ S1 … Si S, , ,〈 〉, ,〈 〉 if S C∈ l′==v∧

∅ otherwise⎩
⎪
⎨
⎪
⎧

=

This operator just returns the right hand side triple if S is in O. If S is in C, then there
are two cases. First, the value propagation along a du-sequence is performed if l' is v
and vector <S1, ..., Si> appended with S is the third element of the result triple.
Second, the value of null is returned if l' is not v.

Given the Gen, Kill and IN sets, L_out[S] is computed as:

L_out[S] L_in[S] L_gen[S]⊕() L_in[S] L_kill[S]–()∪=

L_out[S] has all the locations (registers and memory) that hold a value, regardless of
whether it is current or stale. When M[d]=r[2] at code point 5 in Figure 1 is
processed, L_in[5] has “<r[2], d, <4>>” and L_gen[5] consists of “<M[d], r[2],

<5>>”. The triple “<M[d], d, <4, 5>>” is computed from “L_in[5] ⊕ L_gen[5]”. This
triple shows that M[d] holds value d after code point 5, which was computed at code
point 4 and propagated at code point 5.

At the merge point to block B, L_in is:

L_in[B] = L_out Predecessors B()[]∩

L_in is computed by ∩ on L_outs of all predecessors to B. A correct register
allocation puts the same value in the same location along any preceding path for a
later use of that value from that location. Therefore, ∩ removes the “inconsistent
triples” which have different values in the same location.

Computing the Stale Set (ST)

ST_gen[S] L_gen[S] =

ST_gen[S] is the same as L_gen[S] though its two cases have different semantics.
First, when S in O defines a new v is into ld (where ld→v), every previous v held in
some other locations (not ld) becomes stale. Which locations holding v will be
discovered from L_in[S] later on. Second, S in C is considered. ST_gen[S] is
computed using a place holder ls (i.e., the source of S) to represent the actual value.
If ls holds a stale value, ld also holds a stale value after the value propagation.

ST_kill[S] is computed similar to L_kill[S]:

ST_kill[S] ld * *, ,〈 〉=

When a stale value in ld is destroyed by S, this fact must be reflected in ST_kill[S].

The operator • is defined for finding stale values.
Definition of (�

 Catching and Identifying Bugs in Register Allocation 291

�

The first case applies to S in O. Any other location l' (i.e., l' (l) that holds v' (i.e., v' =
= v) is discovered and a new triple “<l', v, <S>>” is produced. The second case applies
to S in C and the right hand side triple is simply returned. The last case yields null.

ST_out[S] is computed as:

�

For S in O, “L_in[S] (ST_gen[S]” computes the triples where v in any location other
than ld becomes stale because S defines new v in ld. For example, when
r[2]=r[2]+1 at code point 11 in Figure 1 is processed, ST_gen[11] consists of
“<r[2], c, <11>>”. The triple “<M[c], c, <2,3>>” is retrieved from L_in[11].
“L_in[11] • ST_gen[11]” produces “<M[c], c, <11>>”. For S in C, “<ld, ls, <S>>” is
computed from • operation and “ST_in[S] ⊕ (L_in[S] • ST_gen[S])” does the stale
value propagation. For example, “ST_in[10] ⊕ (L_in[10] • ST_gen[10])” produces
“<r[2], c, <11,10>>”, which shows that the previous c became stale at code point 11
and propagated to r[2] at code point 10 along the loop back edge.

At the merge point to block B, ST_in is:

ST_in[B] = ST _out Predecessors B()[]∪

ST_in is computed by the union on ST_outs of all predecessors to B. The union is
done because if the value is stale along any path to the block, it is possible that the
stale value might be used in the current (or later) block. Hence, the union operation
preserves the fact that the value is stale along some path.

Computing the Eviction Set (E)
The equations for E are closely related to the ones for L.

E_gen[S] ld * S〈 〉, ,〈 〉 E_kill[S] L_gen[S]=,=

E_gen[S] records that any value in ld will be evicted because of S. But which value
is actually evicted must be discovered from L_in[S]. E_kill[S] is the same as
L_gen[S].

To obtain the value currently held in a location (e.g., ld) and then indicate that it is
evicted from there, the operator ◊ is defined and its semantics is self-explanatory.

Definition of ◊:

l′ v′ *, ,〈 〉 l * S〈 〉, ,〈 〉◊
l′ v′ S〈 〉, ,〈 〉 if l′==l

∅ otherwise⎩
⎨
⎧

=

E_out[S] is computed as:

E_out[S] E_in[S] L_in[S] E_gen[S]◊()∪() L_in[S] E_kill[S]⊕()–=

The operator ◊ discovers the value evicted by S from ld with the computation
“L_in[S] ◊ E_gen[S]”. “L_in[S] ⊕ E_kill[S]” gives the triples that a value is put into
ld by S.

292 Y. Huang, B.R. Childers, and M.L. Soffa

At the merge point to block B, E_in is computed as:

E_in[B] = E _out Predecessors B()[]∪

E_in[B] holds any value’s history of being most recently evicted from any location
along all preceding paths.

3.3 Step 3: Checking and Reporting (errAnalysis)

Once L, ST and E are collected, they are used to check the output code. The error
analysis step ensures that the du-pairs from the input are preserved in the output. The
algorithm for identifying and reporting errors is shown in errAnalysis in Figure 4.

errAnalysis(output,map,sets) {
 L:=sets.L; ST:=sets.ST; E:=sets.E;
 foreach Block B∈output {
 if (B≠Binitial)
 setFinalization(B,map,L,ST,E);
 foreach Statement S∈B {
 typeCheck(S,map);
 constraintCheck(S,map);
 if (S∈Ο)
 useCheck(S,map,L,ST,E);
 }
 }
}

setFinalization(B,map,L,ST,E) {
 L_union := ∪ L_out[Predecessors(B)];
 L_inconsistent := {<l,v,>|
 ∀<l,v,*>∈(L_unionL_in[B])};
 ST_in[B] := ST_in[B]L_inconsistent;
 E_in[B] := E_in[B}∪ L_inconsistent;
 computeLocalFlow(B,map,L,ST,E);
}

useCheck(S,map,L,ST,E) {
 foreach l∈uses(S) {
 v := getMap(S,l,map);
 if (<l,v,*>∈L_in[S]) {
 if (<l,v,c>∈ST_in[S]) {
 ε := “S uses stale

value,
 c made v in l

stale”;
 }else ε := null;
 }elsif (<l’,v,c>∈L_in[S])

{

 ε := “S uses wrong
operand,

 but c defined v in
l’”;

 }else {
 ∀<l",v,c>∈E_in[S];
 ε := “S uses evicted

value,
 c evicted v from

l"”;
 }
 }
}

Fig. 4. Pseudocode for checking algorithm

For non-initial blocks, a finalization step is performed on the data flow sets by
setFinalization. The finalization is actually done in defAnalysis, but we show
it here for clarity. It computes L_inconsistent − the “inconsistent triples” where the
values in the same location are different for different paths. These triples are not
computed into L_in because a correct register allocation should put the same value
into the same location for any path. To report causes rather than just check errors, we
assume that the inconsistent values (in the same location) are “evicted” at the merge.
Therefore, L_inconsistent is added to E_in and removed from ST_in. Finally, local
data flow sets are updated by the equations discussed in Section 3.2.1.

The next step in errAnalysis iterates over all the statements. First, the operands
of the output are verified that they have the correct types as specified by the input.

 Catching and Identifying Bugs in Register Allocation 293

Second, it verifies that architectural constraints are satisfied with constraintCheck,
which depends on the target architecture (not shown for brevity). Finally, useCheck
applies to O statements (C statements are implicitly checked because of the value
propagation performed in defAnalysis).

useCheck checks that all uses in every O statement are correct in terms of the
input’s data flow. It reports the error location and type for any data flow violation. For
each use l (i.e., location), it first consults the mappings to determine which value it
should use. When l actually holds v, which is shown as a triple “<l, v, *>” in L_in, it
further checks if v in l is stale. Next, it checks if v is in other locations. If this is true, it
implies that the wrong operand might be used. Otherwise, an eviction error must have
occurred. The history of v being most recently evicted from any location l'' is
reported.

3.4 Extensions

Two important extensions to a register allocator are coalescing and rematerialization
[4, 5, 6, 11]. This section describes how SARAC can support these extensions. It
shows how sub-register class allocation and address expressions are incorporated.

Input Output Du-sequence Web
1: L0:x=a+1;
2: z=x;
3: PC=L2;
4: L1:y=a+2;
5: z=y;
6: u=y+3;
7: L2:v=z;
8: w=v+4;

1: L0:r[1]=r[3]+1;
2: PC=L2;
3: L1:r[1]=r[3]+2;
4: r[5]=r[1]+3;
5: L2:r[6]=r[1]+4;

copies for x, y, z,
and v have been been
coalesced in r[1]

defs 1.x= 4.y=

uses 8.=v 6.=y

Fig. 5. Register coalescing example and its du-sequence web

Register Coalescing. Register coalescing removes unnecessary copies from the input
code. As shown in Figure 5, the copies at input code points 2, 5, and 7 for z are
removed in the output. Thus, r[1] can hold x, y, z or v; a location can correspond to
multiple values. The analyses described earlier rely on a one-to-one mapping between
locations and values and consequently cannot directly handle coalescing.

To support coalescing, SARAC needs to handle the effect of removing copies.
SARAC infers coalescing by examining the du-sequences in the input code and
updating the mappings to capture all possibly coalesced values. The idea is to use a
“du-sequence web” to capture the relationship between a definition that begins a du-
sequence and a use that ends the sequence. We define a du-sequence web as a set of
du-sequences sharing a start or end, where the copy statements in each du-sequence
are collapsed. There may be many independent webs for the input code, each
corresponding to a set of related du-sequences. The most right column of Figure 5
shows a web for the input code. In this web, the du-sequence (1.x=, 2.z=x, 7.v=z,
8.=v) is represented by the edge between 1.x= and 8.=v. The web also captures the
relationships among the du-sequences (4.y=, 5.z=y, 7.v=z, 8.=v) and (4.y=,
6.=y).

294 Y. Huang, B.R. Childers, and M.L. Soffa

The webs are used to update the mappings. Once the webs are constructed, each
web is assigned a unique name, say n. Then, the name in the mappings for the web’s
definitions and uses are changed to n. In the example, r[1]→x (where, r[1] is the
destination of r[1]=r[3]+1) is changed to r[1]→n. Any input code copy that is
actually not coalesced is also considered as C statement besides the copies injected by
the register allocator. Thus, the mappings for any copy statement passed from the
input to output are removed. With the updated mappings, defAnalysis and
errAnalysis are performed normally. In defAnalysis, the value n is propagated
along the output du-sequence. In errAnalysis, only the uses in a du-sequence web
are analyzed.

Rematerialization. Rematerialization improves spill code by recomputing values
rather than reloading them from memory. It usually considers constant expressions in
the code, such as integer constants in load-immediate statements and address offsets.

To handle rematerialization, the mappings are extended to bind constants to values
and locations. The idea is to bind constants in the input and output code to values and
locations in the mappings. The bindings are created by scanning the output code to
find uses of constant expressions (i.e., the use is reachable by a constant definition,
like a load-immediate). A similar step is performed to bind constants to values in the
input code. errAnalysis compares a location that is bound to a constant to the
corresponding value’s binding. If the constants match, then the output code is correct.

Sub-register Class Allocation. Some architectures allow different registers to
overlap. For instance, the IA-32 has the AH and AL registers, which overlap a part of
the AX register. Such overlapping registers are a “register alias set” [30] and an
allocator has to take into account the overlap when assigning registers. A write to a
register will destroy the value in any member of its alias set.

To handle sub-register class allocation, only modest modifications are needed to
SARAC’s data flow equations at several points. The equations have to be changed to
take into account the effect on the full register alias set. For example, when L_kill[S]
is computed, the register alias set of ld is considered, rather than just ld.

Address Generation. Some allocators determine an effective address (rather than a
variable or temporary name) for spilling a value. In this case, this address is typically
computed as an offset from the stack pointer. In SARAC, a “memory location” is the
effective address used in a store/load. Assuming that the allocator makes only the
edits described earlier, there can be no intervening manipulation of the stack pointer
between a store and an associated load. That is, the allowable edits do not permit the
insertion of statements that change the stack pointer (except in the function prologue
and epilogue). Thus, the effective addresses can be easily determined. When the
allocator directly manipulates the stack pointer, SARAC determines an address by
evaluating the operations done to the stack pointer and offset.

4 Experiments

We implemented SARAC as a tool (ra-analyzer) for SUIF’s backend code optimizer
(MachSUIF, version 2.02.07.15), on the Intel IA-32 [29]. A global graph coloring

 Catching and Identifying Bugs in Register Allocation 295

register allocator [11] was implemented as a separate pass in MachSUIF. ra-analyzer
is run after register allocation. Two experiments were conducted. First, faults were
injected into the allocator’s output to explore how the tool might be used to find bugs.
Second, the performance and memory overhead of the tool were measured.

For the experiments, we used benchmarks in SPECint2K [8], MediaBench [15]
and MiBench [19] that are compilable by base SUIF. The procedures in the
benchmarks span a wide range of code sizes and complexities. All experiments were
run on a RedHat Linux computer with a 2.4 GHz Pentium 4 and 1 GB RAM.

4.1 Fault Injection

We checked if MachSUIF’s allocator causes errors in the benchmarks and found no
errors for two possible reasons. First, MachSUIF’s allocator is correct. Second, a very
limited number of test suites (many benchmarks cannot be compiled by SUIF) may
not expose all latent bugs. Thus, we believe that ra-analyzer is particularly useful in a
regression testing environment or during the development of a compiler.

To illustrate how ra-analyzer might be used by compiler engineers, we injected
bugs into the output of MachSUIF’s allocator. We then used ra-analyzer to find the
bugs. The bugs were automatically injected by a “fault injector”. The fault injector
made incorrect edits to the output code, including incorrect register assignment,
wrong store/load, missing store/load. For each edit type, the fault injector randomly
selected a basic block to change. An appropriate statement was found to modify,
based on the edit type. If an appropriate statement could not be located, the edit was
abandoned and a new one was tried. The injector attempted to make 5 changes for
each edit type, but it sometimes made fewer edits when it could not find a candidate.
Each function in every benchmark had 0 to 25 incorrect edits.

As an example, the fault injector changed one register operand to a different
register in the FFT benchmark. In this case, the statement movl $1,%ecx was
changed to movl $1,%ebx. The register %ecx holds the virtual register $vr12. When
ra-analyzer checked the code, it reported the error message:

addl %ecx,%eax
//Wrong operand - %ecx,"movl $1,%ebx" defined $vr12 in %ebx

From the error message, compiler engineers can identify what went wrong. For
example, consistently using the wrong register might suggest that liveness analysis or
the interference graph construction has a problem. With the information from
ra-analyzer, compiler engineers can use a debugger to step through the allocator and
find bugs.

In the fault injection experiments, 65 to 10,749 total incorrect edits were made to
the benchmarks. The simpler programs (e.g., FFT) had the fewest edits, while the
more complex ones (e.g., 255.vortex) had the most. Of the total edits, there were 22–
3,198 incorrect register assignment edits, 29–5,104 wrong store/load edits, and 7–
2,447 missing store/load edits. The edits made covered the possible changes to the
code described in Section 2.2. The edits lead to a total of 108–18,103 errors. There
were 18–2,648 stale errors, 49–7,552 wrong operand errors and 35–7,903 eviction
errors. When ra-analyzer was applied on the code, it correctly caught the errors
without generating any false positives or negatives, and reported their locations and
types.

296 Y. Huang, B.R. Childers, and M.L. Soffa

4.2 Performance and Memory Overhead

Table 1 shows the performance and memory overhead of ra-analyzer for the
benchmarks. The major column “# Statements” describes benchmark size. The
secondary column “Tot” is the total number of intermediate code statements in a
benchmark, “Procs” is the number of procedures, and “Avg” is the average number of
statements.

Table 1. Memory and performance overhead

Statements Memory Overhead Performance Overhead
Benchmarks Tot Procs Avg Avg Max Min Analyzer RA RA% MachSuif Tot%
164.gzip 17,396 106 164 44,338 553,736 200 4.06 3.29 123% 53.30 8%
175.vpr 56,693 300 189 44,481 1,971,892 100 13.02 10.95 119% 169.55 8%
181.mcf 4,844 26 186 40,473 230,884 1,044 1.13 0.95 120% 28.14 4%
197.parser 40,677 324 126 43,675 2,147,404 100 11.64 7.15 163% 112.89 10%
255.vortex 203,810 923 221 80,572 10,027,076 100 53.29 41.78 128% 599.66 9%
256.bzip2 10,680 74 144 48,238 988,144 200 3.21 2.30 139% 32.09 10%
300.twolf 99,780 191 522 454,336 9,881,344 196 87.95 25.29 348% 307.81 29%
FFT 953 7 136 22,057 77,244 1,932 0.23 0.19 122% 6.65 3%
bitcount 816 15 54 7,177 21,000 1,328 0.10 0.13 81% 12.19 1%
dijkstra 434 6 72 10,934 32,792 200 0.07 0.06 122% 1.95 3%
sha 824 8 103 14,381 56,184 5,044 0.15 0.21 71% 4.19 4%
stringsearch 974 10 97 17,967 31,176 552 0.17 0.17 99% 10.25 2%
jpeg 82,923 506 164 38,805 925,564 100 20.90 17.12 122% 279.54 7%
adpcm 710 5 142 27,743 57,408 9,900 0.12 0.13 92% 5.70 2%
epic 11,452 49 234 88,801 1,935,300 956 6.22 4.46 139% 41.49 15%
g721 3,942 28 141 32,769 425,360 3,552 0.79 0.80 98% 13.48 6%
mpeg2 45,995 206 223 67,238 1,919,996 200 13.76 10.26 134% 131.44 10%

In Table 1, the major column “Memory Overhead” gives statistics about the
memory overhead. The average (Avg), maximum (Max) and minimum (Min) data in
bytes are presented for procedures in each benchmark. As expected, MiBench has the
lowest memory requirements. These programs have small procedures (e.g., bitcount
has an average of 54 statements in a procedure), and as a result, the size of the data
flow sets tends to be small. Other programs, namely 255.vortex and 300.twolf, have
larger memory requirements. In 255.vortex, Draw701() needs 10 MB because of its
large number of intermediate code statements (5,228). However, 255.vortex’s average
memory requirement is consistent with the other benchmarks because it has only a
few large procedures and many smaller ones. On the other hand, 300.twolf has a
relatively small number of procedures that are quite large and complex (varying from
3 to 4,462 intermediate statements). As a result, its average memory consumption is
the largest among all programs. In this benchmark, uclosepns() has the maximum
memory overhead (9.8 MB) because it has a large number of statements (4,001) and
basic blocks (417). Although it doesn’t have the most statements in 300.twolf,
uclosepns() has the most basic blocks and as a result, it incurs the most memory
overhead. The average memory overhead is 85 KB for all benchmarks. This overhead
is minimal.

We also investigated how the data flow sets (L, ST, and E) and the mappings
contribute to total memory overhead. Because ST is a subset of L (see the data flow
equations in Section 3.2), ra-analyzer records stale values only in ST for efficiency

 Catching and Identifying Bugs in Register Allocation 297

(i.e., L does not record stale values, which are already in ST). Across all benchmarks,
L has the least memory consumption and ST has the most. L tends to be small (e.g.,
for uclosepns(), it is 375KB) because of the relatively small number of locations
(operands) that it records. ST, on the other hand, tracks stale values. Thus, it is
generally quite large (e.g., in uclosepns(), it is 6.26 MB). E is typically moderate
in size; in uclosepns(), it is 3.2 MB. The mappings also consume memory, which
is proportional to the number of intermediate statements and the number of operands.
For the benchmarks, the mappings take 88 bytes to 450 KB (average 19 KB).

In Table 1, the major column “Performance Overhead” gives ra-analyzer’s run-
time performance. The column “Analyzer” is the total run-time in seconds for ra-
analyzer and the column “RA” is for MachSUIF’s allocator. The run-times are totals
and account for compilation of all procedures in a benchmark. The column “RA%” is
the percentage overhead of ra-analyzer over the allocator, which varies from 71% to
348% (average 96%). We expect that the run-time of ra-analyzer should be about the
same as the run-time for the register allocator since both do somewhat similar analysis
steps. In all benchmarks, except 300.twolf and 197.parser, the overhead follows this
expectation, ranging from 71% to 139%. In 300.twolf the overhead is 348% and in
197.parser the overhead is 163%. This higher overhead is due to the use of iterative
data flow analysis in ra-analyzer. In these two benchmarks, there is at least one
complicated procedure where the data flow sets take a while to converge because of
multiple, deep loop nests. For example, in 300.twolf, the procedure uclosepns()
takes the most time (10.96 Sec). It has 15 loop nests (with a maximum nest depth of
3), and takes up to 5 iterations for the data flow sets to converge.

The last two columns compare ra-analyzer’s performance to overall compile-time.
The column labeled “MachSuif” is the run-time of the MachSUIF compiler without
ra-analyzer. The column “Tot%” is the total percentage increase in compile-time
when ra-analyzer is run. On most benchmarks, ra-analyzer’s overhead is less than
10%. In 300.twolf, the overhead is 29%. Despite this one benchmark, the tool works
well: The average overhead relative to total compile-time is 8%. This small cost is
worth the benefit of ensuring that the register allocation is correct.

5 Related Work

Several researchers have focused on proving the correctness of compiler optimization
algorithms. Lacey et al. [14] used temporal logic to express data flow analysis and
prove optimization correctness via reasoning. They did not consider register
allocation. Naik and Palsberg [20] presented a proof for the correctness of an ILP
register allocation algorithm. Ohori et al. [23] proposed a framework to construct and
prove register allocation algorithms. Our work differs in that it addresses the
implementation difficulties of register allocation, rather than algorithm correctness.
Indeed, our work is complementary to the correctness proof of allocation algorithms.

Lerner et al. [16, 17] proved the soundness of several optimization
implementations. Their approach requires the compiler engineer to use a domain-
specific language to implement optimizations to automate reasoning about
correctness. The verification of the register allocator’s implementation is not
presented.

298 Y. Huang, B.R. Childers, and M.L. Soffa

Similar to our work, some research efforts suggest automatically checking
semantic equivalence between the input and output code [18, 21, 22, 25, 27].
However, the range of optimizations that can be handled in these approaches is
typically limited. Among these efforts, only McNerney et al. [18] and Necula et al.
[21] have examined how to check the output of the register allocator. The abstract
interpretation approach in [18] applies only to a restricted domain of programs and
did not present evaluation data. Necula et al. [21] utilize symbolic evaluation in their
translation validation infrastructure. However, this approach reports false alarms and
has significant compile-time overhead. By focusing on allocation, SARAC can
exploit properties of the allocation process (e.g., the property that def-use pairs are
preserved in the output). As a result, our technique is accurate and fast. It also reports
error casual information.

6 Conclusion and Future Work

This paper describes SARAC, a new approach to catch and identify bugs in register
allocation. The approach statically checks that the input def-use pairs are maintained
in the output code, given that the register allocator conducts limited edits. It is
accurate and fast. The approach can be extended to handle register coalescing,
rematerialization and sub-register class allocation. A prototype tool (ra-analyzer)
shows that our approach has minimal compile-time and memory overhead.

A goal for our future work is to make ra-analyzer standalone so that it can be used
with other compilers and machine architectures. To achieve this goal, SARAC will
need to support more register allocators and register file structures, particularly ones
that allow predication or have irregular register types. We also plan to more fully
support type and architectural constraint checking. This support is important because
the types and architectural constraints can be a common error source in a register
allocator. Another issue is how to interface the tool to different compilers and
intermediate representations. A final issue in making SARAC standalone is to
develop a way to describe machine dependent information about registers to the tool.

References

[1] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. ACM
SIGPLAN Conf. on Programming Language Design and Implementation, June 1988.

[2] D. Bernstein, D. Q. Goldin et al. Spill code minimization techniques for optimizing
compilers. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June 1989.

[3] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating register allocation and
instruction scheduling for RISCs. 4th Int’l. Conf. on Architectural Support for
Programming Languages and Operating Systems, April 1991.

[4] P. Briggs, K. D. Cooper and L. Torczon. Improvements to graph coloring register
allocation. ACM Trans. on Programming Languages and Systems, 3(16): 428-455, May
1994.

[5] P. Briggs, K. D. Cooper and L. Torczon. Rematerialization. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, June 1992.

 Catching and Identifying Bugs in Register Allocation 299

[6] G. J. Chaitin. Register allocation & spilling via graph coloring. Symp. on Compiler
Construction, June 1982.

[7] F. C. Chow and J. L. Hennessy. The priority-based register allocation coloring approach.
ACM Trans. on Programming Languages and Systems, 4(12):501-536, October 1990.

[8] CPU2000 benchmark. Standard Performance Evaluation Corporation (SPEC),
URL: http://www.spec.org.

[9] J. W. Davidson and C. W. Fraser. Register allocation and exhaustive peephole
optimization. Software --- Practice and Experience, 14 (9): 857-865, September 1984.

[10] GCC. URL: http://gcc.gnu.org/.
[11] L. George and A. W. Appel. Iterated register coalescing. ACM Trans. on Programming

Languages and Systems, 3(18): 300-324, May 1996.
[12] R. Gupta, M. L. Soffa and T. Steele. Register allocation via clique separators. ACM

SIGPLAN Conf. on Programming Language Design and Implementation, July 1989.
[13] C. S. Jaramillo, R. Gupta and M. L. Soffa. Verifying optimizers through comparison

checking. Int’l. Workshop on Compiler Optimization Meets Compiler Verification, April
2002.

[14] D. Lacey, N. D. Jones, E. V. Wyk and C. C. Frederiksen. Proving correctness of compiler
optimizations by temporal logic. Symp. on Principles of Programming Languages,
January 2002.

[15] C. Lee, M. Potkonjak and W. H. Mangione-Smith. MediaBench: a tool for evaluating and
synthesizing multimedia and communicatons systems. ACM/IEEE Int’l. Symp. on
Microarchitecture, 1997.

[16] S. Lerner, T. Millstein and C. Chambers. Automatically proving the correctness of
compiler optimizations. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June 2003.

[17] S. Lerner, T. Millstein, E. Rice and C. Chambers. Automated soundness proofs for
dataflow analyses and transformations via local rules. Symp. on Principles of
Programming Languages, 2005.

[18] T. M. McNerney. Verifying the correctness of compiler transformations on basic blocks
using abstract interpretation. ACM/SIGPLAN Workshop Partial Evaluation and
Semantics-Based Program Manipulation, 1991.

[19] MiBench. University of Michigan, URL: http://www.eecs.umich.edu/mibench/.
[20] M. Naik and J. Palsberg. Correctness of ILP-based register allocation. Unpublished

manuscript. URL: http://theory.stanford.edu/~mhn/pubs/regalloc.pdf.
[21] G. C. Necula. Translation validation for an optimizing compiler. ACM SIGPLAN Conf.

on Programming Language Design and Implementation, June 2000.
[22] G. C. Necula and P. Lee. The design and implementation of a certifying compiler. ACM

SIGPLAN Conf. on Programming Language Design and Implementation, June 1998.
[23] A. Ohori. Register allocation by proof transformation. 12th European Symp. on Program-

ming, April 2003.
[24] S. S. Pinter. Register allocation with instruction scheduling: a new approach. ACM

SIGPLAN Conf. on Programming Language Design and Implementation, June 1993.
[25] A. Pnueli, M. Siegel and F. Singerman. Translation validation. 4th Tools and Algorithms

for Construction and Analysis of Systems, April 1998.
[26] M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. on Programming

Languages and Systems, 5(21): 895–913, September 1999.
[27] M. C. Rinard. Credible compilation. Technical Report MIT-LCS-TR-776, MIT, March

1999.

300 Y. Huang, B.R. Childers, and M.L. Soffa

[28] V. Santhanam and D. Odnert. Register allocation across procedure and module
boundaries. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June 1990.

[29] M. D. Smith and G. Holloway. Machine SUIF. URL: http://www.eecs.harvard.edu/hube/
research/machsuif.html.

[30] M. D. Smith, N. Ramsey and G. Holloway. A generalized algorithm for graph-coloring
register allocation. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June 2004.

Appendices

Mapping Grammar. To define the notation for a mapping, we give a short grammar:

<mapping> := operandposn: <out> → <in>
 <out> := codept . location | codept . #constant
 <in> := codept . value | codept . #constant
 where,
 operandposn – operand number in a statement
 codept – a statement number in the input or output code
 location – a register or memory location
 value – a temporary or variable

For example, consider the code from Figure 1. The statement r[2]=0 at output
code point 2 corresponds to c=0 at input code point 1; therefore, the mapping for the
first operand r[2]at code point 2 is: 1:2.r[2]→1.c, where r[2] is a location
(memory or register) and c is a value (temporary or variable). Similarly, there is a
mapping 2:6.#0→3.#0 to give the correspondence between the constants at output
code point 6 and input code point 3. The mappings generated for the incorrect output
code by mapGen in Figure 3 are:

1:2.r[2]→1.c 2:2.#0→1.#0
1:4.r[2]→2.d 2:4.#1→2.#1
1:6.r[1]→3.n 2:6.#0→3.#0 3:6.L3→3.L3
1:8.r[2]→4.t 2:8.r[1]→4.n 3:8.r[1]→4.d

1:9.r[2]→5.t 2:9.#0→5.#0 3:9.L2→5.L2
1:11.r[2]→6.c 2:11.r[2]→6.c 3:11.#1→6.#1
1:14.r[2]→7.d 2:14.r[2]→7.d 3:14.#1→7.#1
1:16.r[2]→8.t 2:16.r[2]→8.d 3:16.r[1]→8.n

1:17.r[2]→9.t 2:17.#1→9.#1 3:17.L1→9.L1

The mapping in bold is for error 1 in the incorrect output (code point 8).

	Introduction
	Register Allocation
	Data Flow Semantics and Register Allocation
	Sources of Errors

	Error Analysis for Register Allocation
	Step 1: Mapping Generation (mapGen)
	Step 2: Data Flow Analysis (defAnalysis)
	Step 3: Checking and Reporting (errAnalysis)
	Extensions

	Experiments
	Fault Injection
	Performance and Memory Overhead

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

