An Embedded Systems Programming
Environment for C*

Bernd Burgstaller!, Bernhard Scholz!, and Anton Ertl?

! The University of Sydney
2 Technische Universitat Wien

Abstract. Resource constraints are a major concern with the design,
development, and deployment of embedded systems. Embedded systems
are highly hardware-dependent and have little computational power. Mo-
bile embedded systems are further constrained by their limited battery
capacity. Many of these systems are still programmed in assembly lan-
guage because there is a lack of efficient programming environments.

To overcome or at least alleviate the restrictions, we propose a light-
weight and versatile programming environment for the C programming
language that offers mixed-mode execution, i.e., code is either executed
on the CPU or on a virtual machine (VM). This mixed-mode execution
environment combines the advantages of highly compressed bytecode
with the speed of machine code.

We have implemented the programming environment and conducted
experiments for selected programs of the MiBench suite and the Spec
2000. The VM has a footprint of 12 KB on the Intel IA32. Initial results
show that the performance of the virtual machine is typically only 2 to 36
times slower than the binary execution, with compressed code occupying
only 36%-57% of the machine code size. Combining sequences of VM
instructions into new VM instructions (superinstructions) increases the
execution speed and reduces the VM code size. Preliminary experiments
indicate a speedup by a factor of 3.

1 Introduction

Mobile devices powered by batteries constitute a major share of today’s embed-
ded systems market. Mobile devices have embedded intelligence, which needs to
be programmed. Due to the limitations in terms of power consumption, memory
size, and computational power, programming mobile devices is still a difficult
problem. To overcome or at least alleviate the problem of programming embed-
ded systems, we introduce a programming environment for C. The C program-
ming language is still the language of choice for mobile and embedded systems,
with more than 78% of all surveyed embedded systems firmware and application
developers employing it [1].

* This project has been supported by the ARC Discovery Project Grant “Compilation
Techniques for Embedded Systems” under Contract DP 0560190 and the ARC Dis-
covery Project Grant “Distributed Data Processing for Wireless Sensor Networks”
under Contract DP 0664782.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 1204-[T2T6] 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Embedded Systems Programming Environment for C 1205

Our programming environment provides a seamless in-
tegration of VM and machine code execution as outlined Image
in Fig. [l The program is stored as an image which con-
tains bytecoddl and machine code. Depending on whether
the code is bytecode or machine code, it is executed on
the VM or on the CPU respectively. Both, CPU and VM, Memory
share the same memory and the thread of execution can
either jump from the VM to the machine code realm or Fig. 1. Model
vice versa.

In this model rarely executed code is run on the VM. Frequently executed
code is run on the CPU. This mixed-mode execution combines the advantage
of both worlds: machine code is fast however has limited compression poten-
tial. Bytecode is stored highly compressed though the execution is slower. This
execution model results in small image sizes, which reduces memory footprint
and therefore devices will save energy. Also, the costs per device will decrease.
Further advantages of VMs are hardware independent execution of C-programs
and the fast deployment of programs by downloading them via an inter-network
communication.

The contribution of this paper is the implementation of a light-weight pro-
gramming environment for the C programming language. This programming
environment offers mixed-mode execution, i.e., a seamless integration of VM
code and machine code. The footprint overhead of the VM is small. The current
footprint of the VM on an Intel TA32 architecture is 12 KB.

The paper is organised as follows: in Sec. [2] we discuss the compilation path
of the programming environment. In Sec. Bl we discuss the design of our VM.
In Sec. [we present experimental results. In Sec. Bl we survey related work. We
draw our conclusions in Sec.

VM CPU

2 Compilation

Fig. Bl depicts the compilation path of our embedded systems programming en-
vironment. Therein an application consists of a set of C source files containing
code that can be compiled to either bytecode or to machine code. To allow the
programmer to select between the two, we extend the C programming language
with two storage class specifiers (cf. [2]), namely vm and mc. Furthermore, we
use a command line parameter with the C-compiler to select a default storage
class for unassigned entities. (Unassigned entities are entities that have not been
assigned one of the above storage class specifiers). With this mechanism we par-
tition the set of entities of a given application into the set of entities assigned to
the realm of the VM, and those assigned to machine code.

It is the purpose of the splitter to preprocess an application and separate
each source file into a corresponding vm and mc file that reflects the programmer’s
choices with respect to compilation to vm or mc code. The splitter has to achieve a

! In the context of this paper the word “bytecode” does not denote Java bytecode.
Instead, it denotes the instruction code format of our VM.

1206 B. Burgstaller, B. Scholz, and A. Ertl

< <
C-Compiler 5
C-Files M) Byte
S— code S—

o o

C-Files

C-Compiler
(M)

Fig. 2. Compilation Path

#define MAX 1024
mc static void fft float (float xR In, float I In, float xR Out, float *I Out);
vm char Buffer[MAX];

vm int main(void){
float R In[MAX], I In[MAX], R Out[MAX], I Out[MAX];
ffit float (R In,I In,R Out,I Out);
return O;

}

mc static void fft float (float *R In, float *I In, float *R Out, float *I Out)
0 { /* perform FFT x/}

H© 00Utk W

(a) Application

1 #define MAX 1024
2 extern void fft float (float *R In, float *I In, float *R Out, float *xI Out);
3 char Buffer[MAX];
4 int main(void){
5 float R In[MAX]; float I In]MAX]; float R Out[MAX]; float I Out[MAX];
6 fft float (R In,I In,R Out,I Out);
7 return O;
8 }
(b) Application, vm Realm
1 #define MAX 1024
2 extern char Buffer[MAX];
3 void fft float (float *R In, float *I In, float *R Out, float *I Out)
4 { /* perform FFT x/}

(c) Application, mc Realm

Fig. 3. Example: Splitting of Application Sources

clear semantic separation between vm and mc code to enable separate compilation
by the vm and mc compilers.

The example in Fig. Blis a simplified version of the FFT benchmark from the
MiBench embedded benchmark suite [3]. Figure Bl[(a)] denotes the application
which, for the sake of simplicity, consists of only one source file. Line 2 and
lines 9-10 define a C function £ft float, which, due to the storage class speci-
fier mc, is meant to be compiled to machine code. The main function (lines 4-8 is
to be compiled to bytecode; main calls fft float. Line 3 declares a global buffer
variable that is kept in bytecode as well. Figure E@ shows the vm file as output
by the splitter. Therein the code for function £ft float has been removed and a
corresponding external declaration has been inserted to keep the file compileable.
This contrasts the declaration of the global buffer that is kept in the vm file (cf.
line 3). All vm and mc storage class specifiers have been removed, because the

An Embedded Systems Programming Environment for C 1207

occurrence of a declaration in the vm file already implies the vm storage class
specifier. Likewise for the mc-file of Figure |3] It contains only the definition
of the MAX constant, an external declaration for the global buffer, and the code
for function fft float. As can be derived from Fig. @ the separated files are
then compiled by the C compilers for machine- and bytecode.

We employ LCC [5] for both bytecode and machine code compilation. LCC
comes already equipped with a backend for bytecode, which we extended to
facilitate the architecture of our VM (cf. Section [3)).

Bytecode and machine code files of a given application are combined by the
linker to a so-called fat binary. In this linkage step all references are resolved;
this includes cross-references between bytecode and machine code to allow for
seamless execution between the two. The fat binary can then be downloaded and
executed on the embedded device.

3 Virtual Machine

The instruction set of our stack-based VM is closely related to the bytecode
interface that comes with LCC [4], with the main deviations being induced by
the requirements of the seamless integration of vm and mc execution. Table [T
depicts the instructions provided by our VM. The instruction opcodes cover
the leftmost column whereas the column headed “IS-Op.” lists operands derived
from the instruction stream (all other instruction operands come from the stack).
The column entitled “Suffixes” denotes the valid type suffixes for an operand
(F=float, I=signed integer, U=unsigned integer, P=pointer, V=void, B:struct)E
In this way instruction ADDRG receives its pointer argument p from the instruction
stream and pushes it onto the stack. Instructions ADDRF and ADDRL receive an
integer argument literal from the instruction stream; this literal is then used as
an offset to the stack framepointer to compute the address of a formal or local
variable. Instruction BADDRG uses its instruction stream argument as an index
into a lookup table to derive the address of an mc-entity. The lookup table itself
is created by the linker (cf. Section2]). For the remaining instructions of our VM
we refer to the descriptions in Table [l

To make bytecode interpretation acceptable for embedded systems, the per-
formance of the interpretive system must be within reasonable limits compared
to the performance of machine code. Due to the large design space for inter-
preters the achieved performance can vary drastically, with slowdowns between
a factor of 10 and more than a factor of 1000 reported in the literature [6].

We used vmgen [7I8] for the implementation of our VM. Vmgen takes VM
instruction descriptions as input and generates C code for execution, VM code
generation, disassembly, tracing, and profiling. Vmgen already incorporates ad-
vances in interpreter technology such as threaded code (representing a VM in-
struction as the address of the routine that implements the instruction [9]), top

2 Operators contain byte size modifiers (i.e., 1, 2, 4, 8), which we have omitted for
reasons of brevity.

1208 B. Burgstaller, B. Scholz, and A. Ertl

Table 1. VM Instruction Set

Instruction IS-Op. Suffixes Description
ADD SUB — FIUP.. integer addition, subtraction
MUL DIV — FIU... integer multiplication, division
NEG — FI.... negation
BAND BOR BXOR — JIU. .. bitwise and, or, xor
BCOM — JIU. .. bitwise complement
LSH RSH MOD — JIU. .. bit shifts and remainder
CNST a .IUP.. push literal a
ADDRG P P push address p of global
ADDRF 1 ..P.. push address of formal parameter, offset 1
ADDRL 1 ..P. push address of local variable, offset 1
BADDRG index ...P.. push address of mc entity at index
INDIR — FIUP.. pop p; push *p
ASGN — FIUP.. POp DP; POp arg; *p = arg
pop p, pop g; copy the
ASGN B & e B block of length a at *q to p
CVI — FIU... convert from signed integer
Ccvu — .IUP.. convert from unsigned integer
CVF — FI.... convert from float
CVP — UL convert from pointer
LABEL — LWV label definition
JUMP targetV. unconditional jump to target
IJUMP — P U indirect jump
EQ GE GT LE LT NE target FIU... compare and jump to target
ARG — FIUP.. top of stack is next outgoing argument
CALL targetV. vm procedure call to target
ICALL — R pop p; call procedure at p
INIT 1 LWV allocate 1 stack cells for local variables
BCALL — FIUPVB mc procedure call
RET — FIUPVB return from procedure call
HALT — R exit the vm interpreter

of stack (TOS) caching (keeping the topmost stack element in a register), and
superinstructions (combining frequently occurring patterns of VM instructions).

Figure Ml depicts a refined view of the execution architecture introduced in
Sec. [l The VM comprises a frontend, an interpreter, and stacks. The purpose
of the frontend is to parse the bytecode (cf. Table[I]) and to issue calls to the in-
terpreter to build the internal representation that vmgen uses to store threaded
instructions. Once this internal representation has been generated from the in-
struction stream, the interpreter is started. Our VM employs three stacks: the
VM stack is used as the evaluation stack, the Arg stack holds procedure call
arguments, and the Prog stack is used for machine code execution. The separate
argument stack is due to LCC’s ordering of bytecode instructions which inter-
sperses procedure call arguments with other stack operands. The separate Arg

An Embedded Systems Programming Environment for C 1209

Image
. VM Stack
ot | e § [“Arg Stack cPU
" preter Prog Stack
Memory

Fig. 4. Refined Execution Model

1 baddrg p4 (#ul -- p)

2 p = getsymbol ptr(ul); 1 add i4 (11 12 -- 1)

21 = 11+12;
(a) BADDRG P4 (c) ADD I4 1bcallv (11 p —-)
_ 2 indirect call v(p,argsp,l1);
Largps Cp ARG) 1 addrl p4 (#1 -- p) 3 argsp = argsp+l1;
2 /* moves p from VM 2 b = (void #)(£p+l);
stack to Arg stack */ P prls (e) BCALL V

(b) ARG P4 (d) ADDRL P4

Fig. 5. Vmgen Instruction Specifications

stack provides an efficient way to collect procedure call arguments and arrange
them in a stack frame (we will elaborate on procedure calls in the following).

Vmgen provides a mechanism to specify the semantics of the instructions
provided by the interpreter. As an example, consider Fig. which depicts
the specification of the ADD instruction with this mechanism{] Therein line 1
describes the stack effect of the instruction: it pops the arguments 11 and 12 from
the VM stack and pushes argument 1. Line 2 contains C code that describes how
argument 1 is actually computed. The overall semantics for the ADD instruction
is to pop 11 and 12 from the VM stack, execute the C code, and push 1 back
on the VM stack.

1 proc main 9 ADDRL P4 0
2 INIT 4096 10 ARG P4 13; EQKE‘EGVM 0
3 ADDRL P4 12288 11 CNST I4 4 .
4 ARG P4 12 CALL V £ft float (b) after linking
5 ADDRL P4 8192 13 CNST 14 0
6 ARG P4 14 RET 14 L void *st[1={
7 ADDRL P4 4096 15 endproc vold *s
2 (void *)&fft float,
8 ARG P4
3 OL};
(a) main.s (c) address table

Fig. 6. Call from Bytecode to Machine Code

3 Note that, unlike Table [[l the VM instructions in Fig. [l include the type and size
specifiers.

1210 B. Burgstaller, B. Scholz, and A. Ertl

To illustrate the concept of mixed mode execution, we consider the vm code
generated for function main of Fig. IE@ This function contains a binary call
to function fft float. Fig. @ depicts the bytecode for function main as
generated by LCC. Line 2 allocates stack space on the VM stack to accommodate
the four arrays of floats declared locally in main. The calling concept is illustrated
in lines 3-12; our LCC bytecode backend is configured to evaluate parameters
of function calls in the same order as with the bytecode (right to left, in this
case). Each ADDRL P4-instruction pushes the address of one float-array onto the
VM stack (cf. the corresponding instruction specification in Fig. @ where
the address in p is computed relative to the VM stack framepointer £p). Each
subsequent ARG P4-instruction moves this address from the VM stack to the Arg
stack (cf. Fig. where the Arg-prefix denotes the argument stack). The
purpose of line 11 is to push the number of stack cells covered by the arguments
onto the VM stack. Line 12 contains the call to £ft float.

Once our linker (cf. Fig. 2]) generates the fat binary, we employ a scan of the
bytecode to collect all references that cannot be resolved within the bytecode
itself. For these references we generate a machine code address table. (The ad-
dress table for our example is shown in Fig. it contains just the address of
function fft float.)

It is only at link time that the actual address of fft float can be resolved.
The linker replaces line 12 of Fig. @ by the code depicted in Fig. @ in
order to account for the fact that this is a binary call. In line 12.1 the index
of function £ft float with respect to the address table is pushed onto the VM
stack (cf. Fig. Bl[(a)] for the corresponding instruction specification). This index
is used by instruction BCALL V (cf. Fig. to perform the binary call.

void indirect call v(void (xf)(void),void *arg, long arglen) {
void xp=alloca(sizeof (Cell)*arglen);
memcpy(p,arg,sizeof (Cell)xarglen);
return (*f)();

U W N =

Fig. 7. Binary Call

The binary call mechanism itself is illustrated in Fig. [l Function alloca
allocates space on the program stack to account for the arguments of the call.
Thereafter the arguments are copied from the Arg stack to the Prog stack (arg
corresponds to the framepointer of the argument stack) and the binary call itself
is carried out. To clean up after the call, the current argument frame is removed
from the argument stack (cf. Fig. .

Calls of bytecode functions from machine code are carried out via a trampoline
(similar to the approach in [I0]). The trampoline code sets up the VM and Arg
stacks and starts VM execution at the first bytecode instruction of the called
function.

An Embedded Systems Programming Environment for C 1211
4 Experiments

As a testbed we used selected C programs of the MiBench benchmark suite [3]
and the Spec CPU 2000 [1I] benchmark suite targeting specific areas of the
embedded market. We performed our experiments on the Intel IA32 platform to
determine

1. the slowdown of programs executed as bytecode on our VM,
2. the VM performance improvement due to superinstructions, and
3. the best possible compression rate by using simple Huffman coding.

4.1 Performance of the Virtual Machine

We compared the performance of the VM to native code on the TA32 platform. To
make a fair comparison, LCC was used to generate the bytecode and the machine
code of the benchmark programs. In Table 2] the runtimes of the benchmark
programs are shown.

Table 2. Performance, Machine Code (s) - A = Bytecode (s)

Benchmark ~ Machine Code (s) Byte Code (s) A

] gzip 85 2943 34.6
$ bzip2 321 11463 35.7
& mef 55.9 483 86
basicmath
small 0.1 0.35 3.5
large 2.1 52 25
S bitcount 0.07 2.16 30.9
& FFT 0.16 4.3 26.9
g adpcm
rawcaudio 1.2 32.1 26.8
rawdaudio 1.2 24.7 20.6
CRC32 1.0 19.7 19.7

In Table 2] the time measurements are given in seconds. All programs are
executed on a Pentium 4 with 1.8GHZ under Linux. The execution time of the
benchmark programs vary from 0.1 to 321 seconds when compiled as machine
code. If the programs are compiled as bytecode the execution increases varying
from 0.35 to 11463 seconds. These results were expected since the execution of
bytecode is slower than machine code. The slowdown (Column A of Table ()
ranges from 2 to 36. Note that the slowdown increases if extensive computations
are performed inside of the VM. If machine libraries are called as in basic math,
the slowdown is much smaller. This result is not surprising and it goes in line with
the expected slowdown factors reported in [7]. Note that this virtual machine
already uses the fastest known techniques such as threaded code and an advanced

1212 B. Burgstaller, B. Scholz, and A. Ertl

dispatching mechanism, but we have not employed superinstructions in the above
experiments.

Latest experiments with superinstructions enabled indicate that significant
further improvements with respect to execution times are possible. In profiling
the gzip program and using just the top 7% of the most frequently executed
bytecode sequences we experienced a reduction of the slowdown from a factor
of 36 to a factor of 12. In allowing more superinstructions further improvements
can be expected. However, there is a clear tradeoff between the code size and
performance of the VM. By converting 7% of the most frequently bytecode se-
quences the codesize of the VMs increases by 55.5%, i.e., to nearly 19 KB instead
of 12 KB.

4.2 Code Compression

Bytecode has properties that allow high compression rates. In this experiment
we compared the size of binary executables with Huffman encoded bytecode.
As a compression method we split the bytecode stream into three portions for
Huffman coding: op-code stream, number stream, and symbol stream. This is a
well known technique [I2] to improve the compression rate. In this experiment
we did not apply a dictionary approach (such as superinstructions or LZW) that
stores re-occurring sequences only once. By adding a dictionary approach, even
higher compression rates are possible. In Table B the results of this experiment
are shown.

Table 3. Codesize

Op-Code Number Symbol Total IR Object
Benchmark (bits) (bits) (bits) (bytes) (bytes) (bytes)
2 gzip 115312 46614 31194 24140 148872 42412
g bzip2 65380 33196 15816 14299 94328 28093
t% mcf 26091 12417 3393 5238 39324 10325
basicmath
small 4728 1965 793 936 6756 2612
large 5970 2373 1116 1183 8648 3224
é bitcount 5702 1897 289 986 7152 1952
% FFT 6998 2926 529 1307 8756 2467
g adpcm
rawcaudio 2774 1309 316 550 4384 1069
rawdaudio 2766 1310 316 549 4384 1067
CRC32 1348 400 60 226 1772 528

Columns Op-Code, Number, and Symbol show the number of bits required
to store the op-codes, numbers, and symbols of the bytecode. We used differ-
ent Huffman codes for op-codes and arguments. Column Total gives the number
of bytes to store Huffman encoded bytecode of a benchmark program. In Column

An Embedded Systems Programming Environment for C 1213

gzip bzip2 mcf basicm. basicm. bitcount FFT adpcm adpem CRC32
small large rawc. rawd.

60

55

50

45

Compression Rate (%)

40

35

Fig. 8. Compression Rate

Object we show the number of bytes of the Intel IA32 machine code. As shown
in Fig. B the compression rate of compressed bytecode is very high. Here we
compare the size of the compressed bytecode (Column Total) with the size of
the machine code (Column Object). Compression rates range from 36% for very
small programs to 57% for larger programs. Compression rates can be further im-
proved by employing dictionary based approaches in combination with Huffman
codes. This initial result is very motivating; it shows that a high compression
rate is achieved by using virtual machine technology.

The number of bytes used for the internal representation is quite expensive,
as shown in Column IR of Table[Bl The internal representation of the bytecode is
bigger than the IA32 machine code. This is attributed to the use of threaded code
techniques [9] in which op-codes are replaced by function pointers. In the Intel
TA32 architecture threaded code techniques waste roughly 3 bytes per bytecode
instruction, i.e., four bytes for a function pointer minus one byte for an op-
code. This result indicates that a buffer technique should be applied to keep
most frequent executed portions of code in its internal representation. Rarely
executed code should be left in its compressed form until it is needed.

5 Related Work

Instead of translating the source code of a high-level language to assembly code,
quite often a VM is used. A VM abstracts the properties of the underlying hard-
ware and, therefore, makes the execution of programs hardware independent.
In comparison to other implementation techniques of programming languages,
VMs have the advantages of (1) portability, (2) ease of implementation, and (3)

1214 B. Burgstaller, B. Scholz, and A. Ertl

fast edit-compile-run cycles. VMs are very light-weight, which makes them suit-
able for embedded systems [1314].

VM code consists of a sequence of VM instructions, which have many simi-
larities to real machine code. In such a design, the interpretive system consists
of two components: (1) a front end, that is a compiler that translates the input
language to VM code, and (2) the VM interpreter that executes VM code. Good
examples of such an architecture are Java’s JVM [I5], Prolog’s WAM [16], and
Smalltalk’s VM [17].

Several tools [TUI8T9] assist the development of VMs. A VM compiler gener-
ates an interpreter for a VM based on a VM specification. For example, the tool
vmgen [7] was used to generate the code for Gforth [20)].

Interpreted code can be executed with binary code and vice versa. Such a
mixed execution environment was introduced for the Java programming lan-
guage [2I]. We believe that dynamic execution environments with mixed-mode
execution have not been investigated for C, although a similar project [22] was
developed for the Trimedia processor.

Low-end embedded systems have strong restrictions on the amount of avail-
able memory, which severely limits the size of the applications. Memory is a
scarce commodity for several reasons: available physical space is limited, and
power consumption and production costs must be minimised. Therefore, a lot
of effort was taken to minimise program sizes of embedded systems applica-
tions. Especially in the realm of Java, compression rates of up to 85% of the
original program size are not rare [23124125]. Instead of using sophisticated
compression schemes, alternative representations of the VM code such as trees
have been investigated [26]. For binary code several techniques have been intro-
duced [1202728]29]. The main technique is to split the code into various portions
and to compress them with different compression schemes. Even the instructions
are split in op-codes and operands. This gives further opportunities to remove
redundancies. Recently an interesting approach was introduced to incorporate
compression into the instruction fetch inside a VM using Huffman codes [30].
It has to be investigated to what extend such an approach would affect the
performance of our VM.

6 Conclusion

In this paper we have introduced a light-weight programming environment for
the C programming language that alleviates the resource constraints present in
embedded systems. Our programming environment provides seamless integration
of VM and machine code execution.

In our compilation model the programmer assigns storage classes to C func-
tions in order to decide whether they are compiled to bytecode or machine code.
Our programming environment uses the LCC compiler, for which we have im-
plemented a bytecode backend. The VM itself was developed with the vmgen
specification tool.

We have conducted experiments with selected programs from the MiBench
and Spec 2000 benchmark suites. Experiments show that the compressed

An Embedded Systems Programming Environment for C 1215

bytecode occupies only 36%-57% of the corresponding machine code. The byte-
code executed on the VM is only 2-36 times slower than machine code. Exper-
iments indicate that superinstructions will further boost the performance by a
factor of 3. However, superinstructions increase the footprint of the VM.

References

11.

12.

13.

14.

15.

16.

17.

18.

. eMedia Asia Ltd. and Gartner, Inc.: Embedded Systems Development Trends:

Asia. http://www.eetasia. com| (2005)

. Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice Hall

Press, Upper Saddle River, NJ, USA (1988)

. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.:

MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In:
Proceedings of the IEEE 4th Annual Workshop on Workload Characterization.
(2001)

. Hanson, D.R., Fraser, C.W.: A Retargetable C Compiler: Design and Implemen-

tation. Addison Wesley (1995)

. Fraser, C.W.: A Retargetable Compiler for ANSI C. SIGPLAN Not. 26 (1991)

29-43

. Romer, T.H., Lee, D., Voelker, G.M., Wolman, A., Wong, W.A., Baer, J.L., Ber-

shad, B.N.; Levy, H.M.: The Structure and Performance of Interpreters. In:
ASPLOS-VII: Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems, New York, NY, USA,
ACM Press (1996) 150-159

. Ertl, M.A., Gregg, D., Krall, A., Paysan, B.: vmgen — A Generator of Efficient

Virtual Machine Interpreters. Software—Practice and Experience 32 (2002) 265
294

. Ertl, M.A., Gregg, D.: Building an Interpreter with vmgen. In: Compiler Con-

struction (CC’02), Springer LNCS 2304 (2002) 5-8 Tool Demonstration.
Bell, J.R.: Threaded Code. Communications of the ACM 16 (1973)

. Bruno Haible: Foreign Function Call Libraries.

http://www.haible.de/bruno/packages-ffcall.html| (2006)

Standard Performance Evaluation Corporation: Spec CPU 2000 (2000)
http://www.spec.org/.

Debray, S., Evans, W.: Profile-Guided Code Compression. In: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design and Imple-
mentation, New York, NY, USA, ACM Press (2002) 95-105

Levis, P., Culler, D.: Mate: A Tiny Virtual Machine for Sensor Networks. In:
International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, USA. (2002)

Various: TinyVM () http://tinyvm.sourceforge.net/|

Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Second edn.
Addison-Wesley (1999)

Ait-Kaci, H.: Warren’s Abstract Machine: A Tutorial Reconstruction. MIT press,
Cambridge (1991)

Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1983)

Kelsey, R.A., Rees, J.A.: A Tractable Scheme Implementation. Lisp and Symbolic
Computation 7 (1994) 315-335

http://www.eetasia.com
http://www.haible.de/bruno/packages-ffcall.html
http://www.spec.org/
http://tinyvm.sourceforge.net/

1216 B. Burgstaller, B. Scholz, and A. Ertl

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Folliot, B., Piumarta, I., Riccardi, F.: A Dynamically Configurable, Multi-
Language Execution Platform. In: Proc. of the 8th ACM SIGOPS European
Workshop. (1998) 175-181

Various: GForth () http://www.jwdt.com/~paysan/gforth.html.

Muller, G., Moura, B., Bellard, F., Consel, C.: Harissa: A Flexible and Efficient
Java Environment Mixing Bytecode and Compiled Code. In: Proceedings of the
3rd Conference on Object-Oriented Technologies and Systems, Portland, OR, USA,
Usenix (1997) 1-20

Hoogerbrugge, J., Augusteijn, L., Trum, J., Wiel, R.V.D.: A Code Compression
System Based on Pipelined Interpreters. Softw. Pract. Exper. 29 (1999) 1005-2023
Pugh, W.: Compressing Java Class Files. In: SIGPLAN Conference on Program-
ming Language Design and Implementation. (1999) 247-258

Clausen, L.R., Schultz, U.P., Consel, C., Muller, G.: Java Bytecode Compression
for Low-End Embedded Systems. ACM TOPLAS 22 (2000) 471-489

Bradley, Q., Horspool, R., Vitek, J.: JAZZ: An Efficient Compressed Format for
Java Archive Files (1998)

Kistler, T., Franz, M.: A Tree-Based Alternative to Java Byte-Codes. International
Journal of Parallel Programming 27 (1999) 21-33

Cooper, K.D., McIntosh, N.: Enhanced Code Compression for Embedded RISC
Processors. In: SIGPLAN Conference on Programming Language Design and Im-
plementation. (1999) 139-149

Ernst, J., Evans, W.S., Fraser, C.W., Lucco, S., Proebsting, T.A.: Code Compres-
sion. In: SIGPLAN Conference on Programming Language Design and Implemen-
tation. (1997) 358-365

Lekatsas, H., Wolf, W.: SAMC: A Code Compression Algorithm for Embedded
Processors. IEEE Transactions on CAD 18 (1999) 1689-1701

Latendresse, M., Feeley, M.: Generation of Fast Interpreters for Huffman Com-
pressed Bytecode. In: IVME ’03: Proceedings of the 2003 Workshop on Interpreters,
Virtual Machines and Emulators, New York, NY, USA, ACM Press (2003) 32-40

http://www.jwdt.com/~paysan/gforth.html

	Introduction
	Compilation
	Virtual Machine
	Experiments
	Performance of the Virtual Machine
	Code Compression

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

