
Probablistic Self-Scheduling

Milind Girkar1, Arun Kejariwal2,
Xinmin Tian1, Hideki Saito1, Alexandru Nicolau2,

Alexander Veidenbaum2, and Constantine Polychronopoulos3

1 Intel Corporation
3600, Juliette Lane

Santa Clara, CA, 95050, USA
2 Center for Embedded Computer Systems

University of California at Irvine
Irvine, CA 92697, USA

3 Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Abstract. Scheduling for large parallel systems such as clusters and
grids presents new challenges due to multiprogramming/polyprocessing
[1]. In such systems, several jobs (each consisting of a number of par-
allel tasks) of multiple users may run at the same time. Processors are
allocated to the different jobs either statically or dynamically; further,
a processor may be taken away from a task of one job and be reas-
signed to a task of another job. Thus, the number of processors available
to a job varies with time. Although several approaches have been pro-
posed in the past for scheduling tasks on multiprocessors, they assume a
dedicated availability of processors. Consequently, the existing schedul-
ing approaches are not suitable for multiprogrammed systems. In this
paper, we present a novel probabilistic approach for scheduling parallel
tasks on multiprogrammed parallel systems. The key characteristic of the
proposed scheme is its self-adaptive nature, i.e., it is responsive to sys-
temic parameters such as number of processors available. Self-adaptation
helps achieve better load balance between the different processors and
helps reduce the synchronization overhead (number of allocation points).
Experimental results show the effectiveness of our technique.

1 Introduction

Scheduling for parallel systems is done at two levels. At the first level, jobs
(of different users) are scheduled such that each job receives a fair share of the
resources. On the other hand, tasks of a job are scheduled on different processors
such that the overall completion time (also known as makespan) is minimized.
In context of dynamic scheduling schemes, this also involves minimizing the run-
time scheduling overhead. Processors may be allocated (to a job) either statically
or dynamically. Further, a processor may be taken away from a task of one job
and be reassigned to a task of another job. As a consequence, the number of

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 253–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

254 M. Girkar et al.

Fig. 1. Variation in the number of processes over an hour on a real multiprogramming
system with 15 nodes (44 CPUs) (http://www.gradea.uci.edu)

processors available to a job varies with time. To validate this, we recorded
the number of user-level processes on a real multiprogrammed system for an
hour (see Figure 1). Clearly, the number of idle processors varies with time, by
as much as 10%, which has a direct effect on the performance of a scheduling
policy. Therefore, a scheduling policy should be designed such that it is aware
of such systemic variations.

In this paper, we address the problem of scheduling parallel tasks of a given
job. Without loss of any generality, we focus on scheduling iterations of a DOALL
loop [2]; note that the proposed technique is general in nature, e.g., it can also
be used for scheduling coarse-grain (function-level) parallel independent tasks.
We model the problem as a task allocation problem wherein at any scheduling
step, given a set of idle processors, one or more iterations are allocated to each
processor. The key consideration in task allocation is the selection of the task
size, i.e., the number of iterations constituting a task. While a small task size
incurs significant scheduling overhead, a large task size results in load imbal-
ance. Thus, the task allocation problem naturally reduces to determining the
optimal task size in order to minimize the total execution time. For this, several
self-scheduling techniques have been proposed for scheduling parallel loops [3].
However, none of the existing techniques account for the variation in the number
of available processors with time. For this, we propose a novel approach, referred
to as Probabilistic Self-Scheduling (PSS), for scheduling of (nested) parallel loops
on multiprogrammed parallel systems. At any scheduling step, the number of it-
erations allocated to an idle processor is determined based on the number of
remaining iterations and the number of processors expected to be available in
future. The latter is determined based on the the number of processors avail-
able in the past. The proposed approach is compatible with the environment
established by auto-scheduling compilers [4].

The rest of the paper is organized as follows. In the next section, we present a
motivating example. Section 3 presents our approach PSS. Experimental setup
and results are presented in Section 4. Previous work is discussed in Section 5.
Finally, in Section 6, we conclude with directions for future research.

http://www.gradea.uci.edu

Probablistic Self-Scheduling 255

2 A Motivating Example

In this section we illustrate the intuitive idea behind our approach (PSS) with
the help of an example. For comparison purposes, we consider two well known
self-scheduling techniques, viz., guided self-scheduling GSS(1) [5] and factoring
[6]. Assuming identical processors, at a given scheduling step GSS(1) assigns 1

P
of the remaining iterations to an idle processor, where P is the total number of
processors; factoring assigns iterations to the processors in batches of P chunks,
where the batch size is half the number of remaining iterations, for example, given
100 iterations and 4 processors, the initial batch size is 50 (= 100/2) and the
chunk size of the first four chunks is 13 (= �50/4�). Consider a multiprogrammed
system consisting of 4 processors. Let processors P1 and P2 be available for time
t ≥ 0 and t ≥ 22 respectively and let processors P3 and P4 be busy serving
other jobs in the system. For a DOALL loop with 100 iterations (for simplicity of
exposition, we assume that each iteration has a workload of 1 unit), the chunk
sizes for GSS(1) and factoring are shown in Table 1. From the table we note
that GSS(1) and factoring incur large synchronization overhead due to large
number of allocation points. This can be attributed to the fact that GSS(1)
and factoring are oblivious of the number of processors available. In contrast,
PSS assigns 1

E[P] of the remaining iterations to an idle processor, where E[P]
is the average number of processors available to the job under consideration. In
the current context, E[P] = 2, as processors P3 and P4 are never available for
scheduling. The chunk sizes for PSS is shown in Table 1. From the table we see
that PSS reduces the synchronization overhead by 50% w.r.t. GSS(1) and by
65% w.r.t. factoring. Clearly, PSS yields better performance than GSS(1) and
factoring as it incurs far less synchronization overhead.

Table 1. Total number of iterations = 100, P = 4

Scheme Chunk Sizes # of Allocation Points

GSS(1) 25 19 14 11 8 6 5 3 2 2 2 1 1 1 14

Factoring 13 13 13 13 6 6 6 6 3 3 3 3 2 2 2 2 1 1 1 1 20

PSS 50 25 13 6 3 2 1 7

3 The Approach

In this section we present the algorithm for our approach - Probabilistic Self-
Scheduling. Although several models have been proposed, viz., global, local and
hybrid, for work queues in context of self-scheduling, we adopt the model pro-
posed by Polychronopoulos and Kuck in [5] owing to its simplicity. Note that
model selection is orthogonal to the concerns we address in this paper. The algo-
rithm is designed for non-preemptive scheduling, whereby a task once assigned
to a processor may not be removed until it has finished execution. The rest of
the section describes the different phases of our scheduling algorithm.

256 M. Girkar et al.

3.1 Expected Processor Availability

As discussed in the previous section, the presence of other jobs in a multipro-
gramming environment has direct impact on the performance of a self-schedule.
In order to address the above, at a given scheduling step t, PSS computes the
chunk size (discussed further in subsection 3.2) based on the number of remain-
ing iterations and the expected value of the number of processors available after
step t assuming that it would be the same as the average number of processors
available in the past. Before discussing how to compute the above, we defines
some terms of probability (for a detailed discussion, the reader is referred to the
book by Meyer [7]).

Preliminaries
Let X be a discrete random variable and its range space, denoted by RX , consist
of a countably infinite number of values, x1, x2, With each possible outcome
xi, we associate a number p(xi) = P (X = xi), called the probability of xi. The
numbers p(xi), i = 1, 2, . . . must satisfy the following:

p(xi) ≥ 0, ∀i

∞∑

i=1

p(xi) = 1.

The function p defined above is called the probability function of the random vari-
able X . The collection of pairs (xi, p(xi)), for i = 1, 2, . . . is called the probability
distribution of X .

Definition 1. The expected value of a discrete random variable X, denoted by
E(X), is defined as:

E(X) =
∞∑

i=1

xip(xi) (1)

if the series
∑∞

i=1 xip(xi) converges absolutely, i.e., if
∑∞

i=1 |xi|p(xi) < ∞. E(X)
is also referred to as the mean value of X.

Processor availability
We model the number of processor available at each scheduling step as a discrete
random variable P . At each scheduling step t, we record the number of available
processors. Also, we determine the expected value of the number of processors
available subsequently. For this, we define a window of width w to compute
the above. The processor availability during this window can be represented as
a histogram, as illustrated in Figure 2(a). From this histogram, the probability
distribution of processor availability is computed [7]. For example, for the window
shown in Figure 2(a), p(xi = 8) = 4/16 = 0.25, as shown in Figure 2(b). Finally,
the expected value is computed using Equation 1.

The window width is parameterized. A larger width increases the accuracy of
the update process, however, it incurs more overhead. It has been shown that

Probablistic Self-Scheduling 257

p (xi)

t

4

8

12

16

P

ro
ce

ss
or

s w

0.5

1

4 8 12 16 20

Processors

(b)(a)

Fig. 2. An illustration of how to determine the probability distribution from the proces-
sor availability record. a) For a given time t, processor availability in the past; b) prob-
ability distribution of processor availability during the window w. (Total number of
processors in the multiprogrammed system P = 20)

run-time performance measurement via use of hardware performance counters
incurs minimal scheduling overhead [8]. Note that the expected value computed
above is not fixed. This is due to the fact that the processor availability profile
in two different windows need not be the same, as evident from Figure 1. Also,
the expected value cannot be determined statically as the processor availability
profile in a given window is non-deterministic. Hence, under PSS, the expected
value is “updated” at every scheduling step.

3.2 Chunk Size

Under GSS, at a given scheduling step, the chunk size (denoted by Λ) is deter-
mined as follows:

Λ =
⌈

WR

P

⌉
(2)

where, WR is the number of remaining iterations. However, as discussed in [6],
the above may result in allocation of too much work to early chunks; specifically,
two-thirds of the work is assigned to first P chunks in case of identical proces-
sors. It has been shown that 50% of the total number of iterations is sufficient
to even out the finishing times of the processors [6]. Therefore, we introduce a
correction factor to “relax” the exponential decay of chunk size. Assuming iden-
tical processors, the number of iterations remaining after P allocations can be
approximated as (1 − 1

ηP)PWR, where η is the correction factor and P is the
number of processors. From the above, η must satisfy the following:

lim
P→∞

(
1 − 1

ηP

)P

= 0.5

Therefore, η = 1.5. The modified formula for the function Λ is as follows:

Λ =
⌈

WR

1.5 P

⌉
(3)

258 M. Girkar et al.

Algorithm 1. Probabilistic Self-Scheduling

Input: A DOALL loop with N iterations and P processors.

Output : A near-optimal dynamic schedule w.r.t. load balance amongst the different
processors and schedule length

WR ← N

/* Generate the schedule (assuming implicit loop coalescing [10]1) */

Let Pidle ⊆ P be a set of idle processors at any given scheduling step

repeat
if |Pidle| ! = 0 then

Determine E[P]
for all pi ∈ Pidle do

/* Compute the chunk size */

Λ = max
�

Wmin,

�
WR

1.5E[P]

��
(5)

Compute index range for each processor

Allocate the iterations corresponding to index range to pi

end for
end if

WR ← WR − |Pidle| × Λ

until WR > 0

where, Wmin is the minimum chunk size (pre-specified by the user).

Based on our discussion in the previous subsection, we adapt Equation 3 for
multiprogramming systems as follows:

Λ =
⌈

WR

1.5 E[P]

⌉
(4)

So far, the chunk size is computed oblivious of the variation in the number work-
load (execution time) of the different iterations. To account for this, Equation 4
can be further refined as proposed in [9]. A detailed discussion of an integrated
approach is beyond the scope of the paper.

3.3 The Algorithm

In this section we present a formal description of the algorithm for PSS. At each
scheduling step, Algorithm 1 first determines the expected number of available
processors (refer to subsection 3.1). Subsequently, it determines the chunk size
Λ (given by Equation 5), i.e., the number of iterations to be allocated to an idle
processor pi. Next, it determines the range of the iterations to be mapped to
processor and maps the corresponding iterations on to processor pi. Note that

Probablistic Self-Scheduling 259

PSS is an online algorithm as the chunk size is determined at run-time based on
WR and E[P].

4 Experiments

We obtained traces of processor availability on a real multiprogramming system
with 15 nodes (44 CPUs) (http://www.gradea.uci.edu). Also, we extracted
several kernels (DOALL loops L1, L2, . . . , L10) from SPEC OMP 2001M [11] and
other scientific applications such as LAMMPS [12] and DAKOTA [13]. We used
the above two as inputs to our simulator [14] to compare the performance of
PSS with adaptive self-tuning scheduling [15] (referred to as HLS in the rest
of the paper). For consistency purposes (w.r.t. the task granularity), we only
consider the “upper algorithm” of HLS which does scheduling at the iteration
level. HLS samples the performance of a number of self-scheduling techniques,
such as guided self-scheduling, factoring, trapezoidal self-scheduling et cetera,
at runtime to determine the best scheme for each loop in a given application
program. Thus, HLS is in essence the best of all the self-scheduling techniques
proposed so far. Due to this, we demonstrate the effectiveness of our approach
over HLS only.

4.1 Results

We conducted two sets of experiments: (i) First, we evaluated the effectiveness
of our approach and compare it with HLS for a small multiprogramming system
(http://www.gradea.uci.edu) with 15 nodes (44 CPUs); (ii) Second, assuming
random processor availability, we evaluated the effectiveness of PSS for number
of processors — 2, 068 as in the Bigben [16] and 10, 240 processors such as in
the Columbia supercomputer [17]. Note that the applicability of our approach
is not restricted to any particular processor configuration.

 0

 50

 100

 150

 200

 250

 300

L10L9L8L7L6L5L4L3L2L1

of

 S
yn

ch
ro

ni
za

tio
n

po
in

ts

Loops

HLS
PSS

(a)

 0

 10

 20

 30

 40

 50

AverageL10L9L8L7L6L5L4L3L2L1

%
 R

ed
uc

tio
n

in
 S

yn
ch

ro
ni

za
tio

n

Loops

(b)

Fig. 3. a) Number of synchronization points for the different kernels; b) % Reduction
in synchronization

1 Loop coalescing transforms multiply nested DOALL loops into singly nested loops.

http://www.gradea.uci.edu
http://www.gradea.uci.edu

260 M. Girkar et al.

 0

 10

 20

 30

 40

 50

AverageL10L9L8L7L6L5L4L3L2L1

of

 S
yn

ch
ro

ni
za

tio
n

po
in

ts

Loops

2,068 processors
10,240 processors

Fig. 4. % Reduction in synchronization (w.r.t. HLS) on systems with 2, 068 and 10, 240
processors

Figure 3 presents a performance (number of synchronization points) compari-
son of PSS with HLS. In order to minimize the effect of uneven start times of the
processors, the number of synchronization points required was computed as an
average of 10 simulation runs. We observe that PSS reduces the synchronization
overhead by a maximum of 46.67% and by 31.67% on an average. The decrease
in synchronization directly increases performance at the application level. The
better allocation of the processors will also tend to increase the performance
at the system level. The latter can be attributed to the reduced contention for
accessing the interconnection network which yields higher throughput.

Next, we evaluated the performance of PSS for large parallel systems, such
as the Bigben [16] and the Columbia supercomputer [17]. Since we did not have
processors availability traces for such systems, we simulated the same using
a random number generator, as in [5]. Figure 4 presents the results for the
performance (% reduction in synchronization) of PSS w.r.t. HLS for 2, 068 and
10, 240 processors. From the figure, we see that PSS reduces synchronization
overhead by a maximum of 29.86% and 22.55% for a system consisting of 2, 068
and 10, 240 processors respectively and by 22.54% and 17.14% on an average
respectively. In case of heavy workloads (i.e., when there are a large number
of jobs of other users running on the system) PSS can potentially yield higher
reduction in the synchronization overhead. This can be explained as follows: in
such cases the expected number of available processors is small which results
in large chunk sizes, see Equation 4. This is in turn leads to reduction in the
synchronization overhead.

5 Previous Work

Early work on scheduling for multiprogrammed parallel systems addressed prob-
lems such as the effect of program concurrency on the throughput of batch
processing systems [18,19]. Later, Ousterhout proposed co-scheduling, where
groups of cooperating processes are assigned processors at the same time [20].

Probablistic Self-Scheduling 261

In order to facilitate sharing of the multiprocessor system amongst several groups
of processors, a group of cooperating processes would execute on the processors
in time-multiplexed fashion. Rommel et al. analyzed the processor sharing disci-
pline in context of parallel jobs running on uniprocessor systems [21]. Approaches
for multiprogramming distributed memory systems are discussed in [22,23]. Poli-
cies for processor allocation in multiprogrammed environments are discussed in
[24,25]. Program characterization and performance evaluation of scheduling al-
gorithms in multiprogrammed systems is discussed in [26,27,28].

Probabilistic scheduling approaches have been proposed in several different
fields of research. In [29], Chandy and Reynolds proposed an approach for
scheduling partially ordered tasks with probabilistic execution times. Bruno and
Downey studied the probabilistic bounds on list scheduling in [30]. Tongsima et
al. [31] proposed confidence-based probabilistic scheduling of data-flow graphs.
In [32], Som et al. presented a probabilistic event scheduling policy for optimistic
parallel discrete event simulation. Burns et al. [33] proposed a scheduling policy
based on probabilistic guarantees for fault-tolerant real-time systems. In [34],
Fujita and Zhou proposed a multiprocessor scheduling problem with probabilis-
tic execution costs. Li and Pan presented a probabilistic analysis of scheduling
precedence constrained parallel tasks on multicomputers with contiguous proces-
sor allocation [35]. Moulin [36] proposed a probabilistic approach for split-proof2

scheduling of parallel jobs to ensure fairness between the different users. Özsoy
[37] investigated the effect of coordinated splitting by several users and pro-
posed that the uniform rule — given n jobs, choose each ordering of the n jobs
(for scheduling) with an equal probability of 1/n! — is the only rule immnue
to coordinated splitting. Recently, Glatard et al. [38] proposed a probabilistic
approach for job partitioning and scheduling on a grid infrastructures. The prob-
lem addressed in each of the aforementioned works is orthogonal to the problem
addressed in this paper (load balancing between the different processors). Fur-
thermore, the techniques proposed in prior work assume that a “fixed” number
of processors are available for scheduling each job. This assumption is not repre-
sentative of the multiprogrammed systems thereby restricting their applicability.

6 Conclusion

In this paper we presented an algorithm for self-scheduling of parallel tasks in
multiprogrammed systems. The key characteristic of our approach is the dy-
namic adaptation of the chunk size based on the variation in the number of
available processors. The approach achieves dual objectives: (i) it achieves load
balance between different processors; and (ii) reduces the synchronization over-
head by reducing the number of allocations points. As future work, we would
like to extend our approach to address other issues such as minimizing maximum
tardiness.

2 Under splitting, a user breaks down his job into multiple smaller jobs under different
aliases. This can potentially reduce the expected wait time if the shortest jobs are
served first.

262 M. Girkar et al.

References

1. C. D. Polychronopoulos. Multiprocessing vs multiprogramming. In Proceedings
of the 1989 International Conference on Parallel Processing, pages II–223–II–230,
August 1989.

2. S. Lundstrom and G. Barnes. A controllable MIMD architectures. In Proceedings of
the 1980 International Conference on Parallel Processing, St. Charles, IL, August
1980.

3. A. Kejariwal and A. Nicolau. Reading list of self-scheduling of parallel loops.
http://www.ics.uci.edu/~akejariw/SelfScheduleReadingList.pdf.

4. C. D. Polychronopoulos. Towards autoscheduling compilers. Journal of Supercom-
puting, 2(3):297–330, 1988.

5. C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers. IEEE Transactions on Comput-
ers, 36(12):1425–1439, 1987.

6. S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring: a method for scheduling
parallel loops. Communications of the ACM, 35(8):90–101, 1992.

7. P. L. Meyer. Introductory Probability and Statistical Applications. Reading, MA,
1970.

8. A. B. Downey and D. G. Feitelson. The elusive goal of workload characterization.
SIGMETRICS Performance Evaluation Review, 26(4):14–29, 1999.

9. A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. Feedback-based guided self-
scheduling. In Proceedings of the 12th SIAM Conference on Parallel Processing for
Scientific Computing, San Francisco, CA, February 2006.

10. C. Polychronopoulos. Loop coalescing: A compiler transformation for parallel ma-
chines. In Proceedings of the 1987 International Conference on Parallel Processing,
pages 235–242, August 1987.

11. SPEC OMP. http://www.spec.org/omp.
12. LAMMPS. http://www.cs.sandia.gov/~sjplimp/lammps.html.
13. DAKOTA. http://endo.sandia.gov/DAKOTA/software.html .
14. A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. An efficient approach for

self-scheduling parallel loops on multiprogrammed parallel computers. In Proceed-
ings of the 18th International Workshop on Languages and Compilers for Parallel
Computing, Hawthorne, NY, October 2005.

15. Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss. An adaptive OpenMP
loop scheduler for hyperthreaded SMPs. In Proceedings of the 17th International
Conference for Parallel and Distributed Computing Systems, San Francisco, CA,
2004.

16. Bigben: Pittsburgh Supercomputing Center. http://www.psc.edu/machines/cray/
xt3/bigben.html.

17. SGI Altix: Columbia Supercomputer. http://www.nas.nasa.gov/Resources/
Systems/columbia.html.

18. J. C. Browne, K. M. Chandy, J. Hogarth, and C. Lee. The effect on throughput
in multi-processing in a multi-programming environment. IEEE Transactions on
Computers, C-22(8):728–735, August 1973.

19. C. H. Sauer and K. M. Chandy. The impact of distributions and disciplines on
multiple processor systems. Communications of the ACM, 22(1):25–34, 1979.

http://www.ics.uci.edu/~akejariw/SelfScheduleReadingList.pdf
http://www.spec.org/omp
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://endo.sandia.gov/DAKOTA/software.html
http://www.psc.edu/machines/cray/xt3/bigben.html.
http://www.psc.edu/machines/cray/xt3/bigben.html.
http://www.nas.nasa.gov/Resources/Systems/columbia.html.
http://www.nas.nasa.gov/Resources/Systems/columbia.html.

Probablistic Self-Scheduling 263

20. J. Ousterhout. Scheduling techniques for concurrent systems. In Proceedings of
the Conference on Distributed Computing Systems, pages 22–30, 1982.

21. C. G. Rommel, D. Towsley, and J. A. Stankovic. Analysis of fork-join jobs us-
ing processor-sharing. Technical Report UM-CS-1987-052, University of Massa-
chusetts, 1987.

22. M. R. Leuze, L. W. Dowdy, and K. H. Park. Multiprogramming a distributed-
memory multiprocessor. Concurrency: Practice and Experience, 1(1):19–33, 1989.

23. S. K. Setia, M. S. Squillante, and S. K. Tripathi. Processor scheduling on multi-
programmed, distributed memory parallel computers. SIGMETRICS Performance
Evaluation Review, 21(1):158–170, 1993.

24. C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor aladdress pol-
icy for multiprogrammed shared-memory multiprocessors. ACM Transactions on
Computer Systems, 11(2):146–178, May 1993.

25. K. C. Sevcik. Application scheduling and processor aladdress in multiprogrammed
parallel processing systems. Performance Evaluation, 19(2-3):107–140, 1994.

26. A. R. Miller. Nonpreemptive run-time scheduling issues on a multitasked, mul-
tiprogrammed multiprocessor with dependencies, bidimensional tasks, folding and
dynamic graphs. PhD thesis, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, 1987.

27. S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in multiprogrammed
parallel systems. In Proceedings of the 1988 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages 104–113, Santa Fe, NM,
1988.

28. S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed mul-
tiprocessor scheduling algorithms. In Proceedings of the 1990 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, pages 226–236,
Boulder, CO, 1990.

29. K. M. Chandy and P. F. Reynolds. Scheduling partially ordered tasks with prob-
abilistic execution times. In Proceedings of the Fifth Symposium on Operating
Systems Principles, pages 169–177, Austin, TX, 1975.

30. J. Bruno and P. Downey. Probabilistic bounds on the performance of list schedul-
ing. SIAM Journal of Computing, 15(2):409–417, 1986.

31. S. Tongsima, C. Chantrapornchai, E. H.-M Sha, and N. L. Passos. Scheduling
with confidence for probabilistic data-flow graphs. In Proceedings of 7th Great
Lakes Symposium on VLSI, pages 150–155, Urbana, IL, 1997.

32. T. K. Som and R. G. Sargent. A probabilistic event scheduling policy for optimistic
parallel discrete event simulation. In Proceedings of 12th Workshop on Parallel and
Distributed Simulation, pages 56–63, Banff, Alberta, Canada, May 1998.

33. A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright. Probabilistic scheduling
guarantees for fault-tolerant real-time systems. In Proceedings of Seventh IFIP
International Working Conference on Dependable Computing for Critical Applica-
tions, pages 361–378, San Jose, CA, January 1999.

34. S. Fujita and H. Zhou. Multiprocessor scheduling problem with probabilistic ex-
ecution costs. In Proceedings International Symposium on Parallel Architectures,
Algorithms and Networks, pages 121–126, Dallas/Richardson, TX, December 2000.

35. K. Li and Y. Pan. Probabilistic analysis of scheduling precedence constrained par-
allel tasks on multicomputers with contiguous processor allocation. IEEE Trans-
actions on Computers, 49(10):1021–1030, 2000.

264 M. Girkar et al.

36. H. Moulin. Split-proof probabilistic scheduling. In New Trends in Co-operative
Game Theory, January 2005.

37. H. Özsoy. Coordinated splitting in probabilistic scheduling. In Public Economic
Theory, Marseille, France, 2005.

38. T. Glatard, , J. Montagnat, and X. Pennec. Probabilistic and dynamic optimiza-
tion of job partitioning on a grid infrastructure. In Proceedings of the 14th Euromi-
cro Conference on Parallel, Distributed and Network-based Processing, Montbilard-
Sochaux, France, February 2006.

	Introduction
	A Motivating Example
	The Approach
	Expected Processor Availability
	Chunk Size
	The Algorithm

	Experiments
	Results

	Previous Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

