Abstract
Many studies in data mining have proposed a new classification approach called associative classification. According to several reports associative classification achieves higher classification accuracy than do traditional classification approaches. However, the associative classification suffers from a major drawback: it is based on the use of a very large number of classification rules; and consequently takes efforts to select the best ones in order to construct the classifier. To overcome such drawback, we propose a new associative classification method called Garc that exploits a generic basis of association rules in order to reduce the number of association rules without jeopardizing the classification accuracy. Moreover, Garc proposes a new selection criterion called score, allowing to ameliorate the selection of the best rules during classification. Carried out experiments on 12 benchmark data sets indicate that Garc is highly competitive in terms of accuracy in comparison with popular associative classification methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zaiane, O., Antonie, M.: On pruning and tuning rules for associative classifiers. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3681, pp. 966–973. Springer, Heidelberg (2005)
Xiaoxin Yin, J.H.: CPAR: Classification based on Predictive Association Rules. In: Proceedings of the SDM, San Francisco, CA, pp. 369–376 (2003)
Quinlan, J.R.: C4.5: Programs for Machine Learning (1993)
Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Knowledge Discovery and Data Mining, pp. 80–86 (1998)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th Intl. Conference on Very Large Databases, Santiago, Chile, pp. 478–499 (1994)
Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: Proceedings of IEEE International Conference on Data Mining (ICDM 2001), San Jose, CA, pp. 369–376. IEEE Computer Society, Los Alamitos (2001)
Antonie, M., Zaiane, O.: Text Document Categorization by Term Association. In: Proc. of the IEEE International Conference on Data Mining (ICDM 2002), Maebashi City, Japan, pp. 19–26 (2002)
Antonie, M., Zaiane, O.: Classifying Text Documents by Associating Terms with Text Categories. In: Proc. of the Thirteenth Austral-Asian Database Conference (ADC 2002), Melbourne, Australia (2002)
Quinlan, J., Cameron-Jones, R.: FOIL: A midterm report. In: Proceedings of European Conference on Machine Learning, Vienna, Austria, pp. 3–20 (1993)
Wang, J., Karypis, G.: HARMONY: Efficiently mining the best rules for classification. In: Proceedings of the International Conference of Data Mining (SDM 2005) (2005)
Bastide, Y.: Data mining: algorithmes par niveau, techniques d’implantation et applications. Phd thesis, Ecole Doctorale Sciences pour l’Ingénieur de Clermont-Ferrand, Université Blaise Pascal, France (2000)
Bastide, Y., Pasquier, N., Taouil, R., Lakhal, L., Stumme, G.: Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)
Gasmi, G., BenYahia, S., Nguifo, E.M., Slimani, Y.: IGB: A new informative generic base of association rules. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 81–90. Springer, Heidelberg (2005)
Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Journal of Information Systems 24, 25–46 (1999)
Kryszkiewicz, M.: Concise representations of association rules. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 92–109. Springer, Heidelberg (2002)
Kryszkiewicz, M.: Representative association rules and minimum condition maximum consequence association rules. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 361–369. Springer, Heidelberg (1998)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)
Hamrouni, T., BenYahia, S., Slimani, Y.: PRINCE: An algorithm for generating rule bases without closure computations. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp. 346–355. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bouzouita, I., Elloumi, S., Yahia, S.B. (2006). GARC: A New Associative Classification Approach. In: Tjoa, A.M., Trujillo, J. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2006. Lecture Notes in Computer Science, vol 4081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823728_53
Download citation
DOI: https://doi.org/10.1007/11823728_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37736-8
Online ISBN: 978-3-540-37737-5
eBook Packages: Computer ScienceComputer Science (R0)