
An Analysis of Service Trading Architectures

Manuel Resinas, Pablo Fernandez, and Rafael Corchuelo

ETS Ingenieria Informatica
Universidad de Sevilla, Spain
http://www.tdg-seville.info

Abstract. Automating the creation and management of SLAs in elec-
tronic commerce scenarios brings many advantages, such as increasing
the speed in the contracting process or allowing providers to deploy an
automated provision of services based on those SLAs. We focus on the
service trading process, which is the process of locating, selecting, nego-
tiating, and creating SLAs. This process can be applied to a variety of
scenarios and, hence, their requirements are also very different. Despite
some service trading architectures have been proposed, currently there is
no analysis about which one fits better in each scenario. In this paper, we
define a set of properties for abstract service trading architectures based
on an analysis of several practical scenarios. Then, we use it to analyse
and compare the most relevant abstract architectures for service trad-
ing. In so doing, the main contribution of this article is a first approach
to settle the basis for a qualitative selection of the best architecture for
similar trading scenarios.

1 Introduction

Service level agreements (SLAs) are used by many different service industries to
grant guarantees about how a service will be provided or consumed by establish-
ing both functional and non-functional requirements that must be fulfilled by
both parties during the service development. The application of Internet-based
technologies for electronic commerce to establish and manage these SLAs offers
significant advantages to the traditional use of SLAs [1]. Specifically, automating
the creation and management of SLAs, so that the human participation in the
process is reduced to the minimum, brings benefits such as cutting down the
cost of reaching an agreement, increasing the speed in the contracting process
and allowing providers to deploy an automated provision of services based on
the SLAs agreed with their customers [2].

We define service trading process as the process of locating, selecting, negoti-
ating, and creating SLAs. Therefore, the service trading process is a subprocess
that covers the information and negotiation phases of the more general contract-
ing process [3]. The characteristics of the service trading process depend on the
particular scenario where it is developed. These scenarios are very diverse and
can range from a traditional supply chain to dynamically selecting the best VoIP
(Voice over IP) provider or contracting or renegotiating a contract with an ISP



(see Section 2 for more information). As the scenarios are very different, the re-
quirements for each of them are also diverse. Therefore, we argue that there is no
one unique solution for service trading but we must choose the most appropriate
option for each situation.

We focus on abstract architectures for service trading, which are specifications
that define a set of elements for service trading. These abstract architectures can
be later implemented by using different technologies and applied for different
problem domains. Our goal in this paper is to define a set of properties for these
abstract service trading architectures based on an analysis of several service
trading scenarios. These properties enable the analysis and comparison of those
abstract architectures, which is a necessary step to select the most appropriate
architecture in each scenario.

The paper is structured as follows. First, in Section 2, we present four service
trading scenarios that serve as the basis for the set of properties for abstract
service trading architectures presented in Section 3. In Section 4, these properties
are used to analyse and compare the most relevant abstract architectures for
service trading. Finally, we conclude in Section 5.

2 Scenarios

In this section, we describe a set of scenarios that correspond to different cases
of service trading that have been selected based on the diversity of features,
stakeholders and domains.

Scenario 1. Service consumer looking for ISPs. This case relate to a
mid-large size company that looks for an ISP (Internet Service Provider). In
this scenario, a company publishes its demands and wait for the ISPs to make
their offers. In so doing, the company has a passive role while the providers act as
active organisations searching for customers. In this domain and from the point
of view of the company, it is appealing to have a periodic renegotiation of the
service. Furthermore, a high level of automation in the service trading enables
that every renegotiation is open to different ISPs in order to select the best
possible in each case; in this way, it is boosted a dynamic market where each
provider look forward competitive offers adjusted at their capabilities in each
moment. An additional issue is the strict temporal sequencing of the service
trading process. The trading process should coherently encompass the stages to
fit the temporal constraints for the company to avoid problems such as a lack of
the service due to the change of ISP.

In this scenario, the QoS terms during the SLA establishment are a key factor.
In this way, an interesting feature is to be able to automatically negotiate such
features. Concerning the decision-making process, the information known about
providers is the most important element; i.e. the reputation of provider or the
historic knowledge based on previous trading process. Lastly, participant organ-
isations should have the guarantee that the agreements reached by the system
are legitimate.



Scenario 2. Computing services provider. In this case, a company offers
computing services to other organisations. In particular, this case is becoming
increasingly popular in research fields with intensive computational needs such
as bioinformatics. In a concrete manner, the company in this scenario can be
described as a computing service provider that receives demands from other
organisations in terms of computing jobs to be developed.

In this scenario it should be allowed for the company to specify offers that
optimise the usage of its resources. Specifically, in a computing company, unused
(or low used) resources means a decrease in the recovery of the initial investment.
In so doing, offers should vary based on the resource usage and the set of SLAs
the company has reached with its customers. Closely related with those ideas,
from the perspective of the customer, a negotiation of the terms of the SLA is
an interesting issue to be addressed. Moreover, this negotiation process can be
used by the provider to slightly adapt the final SLA and make concessions or
restrictions in order to optimise the current usage level of its resources.

Additionally, as those offers are tightly adjusted to the resource status in each
moment, the decision making infrastructure should also take into account this
information as a first level element before establishing new commitments with
a customer. Finally, it is interesting to remark that, unlike the previous case,
the reputation information is not an important issue from the perspective of the
computing provider.

Scenario 3. Company delegating to a trader specialized in VoIP. This
case describes a company that delegates its telephony needs to a trader that
handle its requests and locate the best possible VoIP(Telephony through Inter-
net) provider for each call. This trader represents an organisation that makes
profit acting as a facilitator between end-user companies and VoIP providers.
These providers offers different services characteristics (e.g. guaranteed band-
width) or restrictions (e.g. Some of them could only operate between certain
countries). In so doing, this trader offers a service of calls management by cre-
ating concrete agreements for each call (or set of calls) with the telephony
provider taking into account the preferences of the company: e.g. minimising
cost.

The information about the telephony service providers can be divided into
two sets: First, a set of information describing the capabilities of the provider
in general terms such as the operational countries or time slots classification
(Peak hours, reduced cost hours, etc.); this set can be used to create a selection
of potential providers. Second, in each moment, when handling an specific call,
the trader can ask about last minute offers from the providers; this offers would
be based on the resource status of provider (as in the previous scenario). In so
doing, based on the information harvested, the trader can construct the specific
SLA proposal the most appealing provider and, finally, if it agrees, the final SLA
is established and the call can be carried out.

Scenario 4. A generic service trader in a supply-chain. One of the
scenarios where service trading fits better is supply-chains, where each organisa-
tion create added value by composing services from different providers. In this



case, a trader of services represents organisations that create high-level services
based on the composition of lower-level services. Many examples can be found
in the literature from telecommunications domain [4] to the transport domain
[5]. This idea of supply-chain can be isolated from a specific domain and, hence,
the elements and requirements expressed in this scenario are mostly valid for the
majority of supply-chains independently of the nature of the services supplied.

In this scenario, the key point to be addressed is an efficient composition
of services that adds value to the customer whose the trader sells its services.
To achieve its goals, an aspect to be addressed is the adaptability to differ-
ent markets. To a service trader the ability to understand different ontologies
is important because it allows him to communicate with different markets or
providers. Closely related with the previous ideas, information harvested about
different providers is necessary for an efficient decision making process of se-
lection of services. For each potential service provider, the trader should ask to
several sources: the provider itself for information about the capabilities it claims
to have, and third parties that can also supply important information about the
reputation of a certain provider.

In order to construct a composed service, the trader should agree several SLAs
with providers for each of the services that will be composed. In this way, during
the establishment of every SLA, three processes are relevant: (i) a classification of
the proposals (coming from the providers); (ii) a selection of the most promising
proposals; (iii) a decision about the handling process for each of the selected
proposals: e.g. whether we negotiate them or not.

3 Properties of Service Trading Architectures

In this section, we present a set of properties describing features of abstract archi-
tectures for service trading. These properties are derived from the four scenarios
described in Section 2. For each property a reference to the related scenario is
supplied; concretely, this references are based in the special importance of the
property for the specified scenario.

1. External discovery (S.1, S.2, S.3 and S.4): We say an abstract architecture
has an external discovery process if it uses an external infrastructure (e.g.
an external registry) to obtain the list of potential parties that demand (or
supply) a service that other party provides (or needs). Alternatively, the
process is internal if no external infrastructure is used, for example, if the
list of potential parties is directly provided by the user.

2. Knowledge adaptation (S.4): An abstract architecture has knowledge adap-
tation [6] [7] if it provides elements to adapt the local knowledge model to the
appropriate discovery infrastructure, making independent the characteristics
of the market modelled by the discovery service to the rest of architecture.

3. Market observation(S.3 and S.4): An abstract architecture with market ob-
servation monitors the changes in the market through observation of the in-
formation provided by external discovery infrastructures and informs about
these changes to the elements of the architecture.



4. Symmetric architecture for providers and consumers (S.4): An abstract ar-
chitecture is symmetric if both service provider and consumer can start the
service trading process and there is no commitment as to which party ad-
vertises and which party queries to the discovery service. Alternatively, an
abstract architecture is asymmetric if only one consumer or provider can
start the service trading process.

5. Information query (S.3 and S.4): An information query is an inquiry made by
one party to another to obtain more detailed information about it or about
the service it provides or demands. Therefore, for an abstract architecture
to support information queries, it must have mechanisms to query services
or to respond to those queries.

6. World model (S.1, S.3 and S.4): An abstract architecture builds a world
model if it analyses previous interactions with the elements external to the
architecture, such as other parties or the discovery services, and uses the
results to make better decisions [8] during the service trading process.

7. Third party information (S.1, S.3 and S.4): This property represent that a
third party is explicitly queried to obtain information related to another.
For instance, to obtain information about its reputation or its geographical
location. In this case, a protocol to carry out this query as well as a shared
taxonomy of terms must be supported by the architecture.

8. Information managed about the parties (S.1, S.2, S.3 and S.4): There are
three types of information that can be managed about the parties: service
information, that is, information about the functional and non-functional
characteristics of the service; trading information or information about the
features of the trading process followed by the party; and party information,
i.e. information about the party that provides or demands a service, such as
its reputation or its geographical situation.

9. Proposals preselection (S.3 and S.4): An abstract architecture has a propos-
als preselection process if, before starting an agreement creation process or
a negotiation, it ranks and/or filters the proposals that it has received or
built based on criteria previously specified.

10. Agreement creation mechanisms (S.1, S.2 and S.4): An abstract architecture
has multiple agreement creation mechanisms if it supports different protocols
to reach to an agreement. These mechanisms can range from a take-it-or-
leave-it protocol [9] to a bilateral negotiation or an auction protocol [8].

11. Notary (S.1 and S.4): An abstract architecture has this property if it provides
any mechanism to guarantee that the agreement created between the two
parties is reliable and non-repudiable. We say an agreement is reliable if both
parties are signing and accepting the same previously agreed document.

12. Decommitment from previously established agreements (S.1 and S.4): An ab-
stract architecture supports the decommitment [10] from previously estab-
lished agreements if it can revoke previous agreements before the execution
of the service, possibly by paying some compensation to the other party. This
implies the implementation of any decommit protocol and the mechanisms
to decide when a decommit is profitable for it.



13. Capacity estimator (S.2 and S.3): An abstract architecture may make use
of a capacity estimator to determine whether the provider can provision
a certain agreement enabling a finer control about its resources and the
implications of the agreements created [2].

14. Trading protocols (S.1, S.2, S.3 and S.4): A trading protocol is a set of stages
(e.g. advertisement, proposal submission, negotiation, resolution, etcetera.)
cross-linked in accordance to some temporal constraints and bounded to
some choreographies. The temporal restrictions specify a set of constraints
about the life-cycle of the trading process. These restrictions can vary from
simple fixed temporal points (e.g. End by 14:00 of 14th, March) to complex
relationships amongst the durations of some stages (e.g. Information stage
starts in the middle of the discovery stage). Therefore, an abstract archi-
tecture that supports different trading protocols must be able to deal with
different temporal constraints on the stages of the service trading process.

15. Creation of agreements for composed services (S.4): A composed service [11]
is a service whose implementation is based on the execution of other services
that may be provided by external entities and, hence, there may exist agree-
ments regulating that execution. The support for creating agreements for
composed services can vary significantly, from simple dependencies between
the services such as “I want either an agreement on all different services
or no agreement at all” to taking into account the service level properties
desired for the composed service.

16. Cooperative or non-cooperative agreement creation (S.1, S.2, S.3 and S.4):
An abstract architecture supports non-cooperative agreement creation when
it acts as a self-interested party reaching agreements with other self-interested
parties. Alternatively, an abstract architecture supports cooperative agree-
ment creation when it can reach agreements with other parties trying to max-
imise only the social welfare.

17. Consumer or provider orientation (S.1, S.3 and S.4): An abstract archi-
tecture is consumer-oriented if it carefully describes the behaviour of the
consumer (or the party acting on his behalf) in the service trading process.
Alternatively, it is provider-oriented if it carefully describes the behaviour
of the provider (or the party acting on his behalf). Note that an abstract
architecture may be both consumer and provider-oriented.

18. Deployment options : An abstract architecture may present several deploy-
ment options depending on their characteristics. Some examples of deploy-
ment are to integrate the architecture in the service provider or to implement
an independent trader of services offering its trading services to several ser-
vice providers or consumers.

19. Assessment mechanisms (S.1, S.3 and S.4): The assessment mechanisms of
an abstract architecture is the kind of information used in the architecture
to evaluate the goodness of a proposal or agreement in relation to some
criteria provided by the user [12]. For instance, the most usual assessment
mechanism in service trading is utility functions.

20. Forms of expressing information and preferences (S.1, S.2, S.3 and S.4):
The preferences and the information managed about the service and the



parties can be expressed in different ways. Each abstract architecture may
have their own way to express them, however, the most commonly used are
to express them as constraints or as rules.

4 Analysis of Service Trading Architectures

Our goal is to apply the set of properties defined in the previous section to the
most relevant abstract architectures. In this context, an abstract architecture is a
specification that defines a set of elements (subsystems, components, interfaces,
data types, or collaborations) for service trading and that can be applied for dif-
ferent domains and implemented with different technologies. Therefore, it is not
the goal of this paper to analyse concrete architectures such as CREMONA [13].

Open Grid Services Architecture [5] is an abstract architecture for Grid sys-
tems and applications. The analysis of OGSA is based in [5] and other spec-
ifications developed by GGF (Global Grid Forum), which detail some aspects
not fully described in that document, such as WS-Agreement [9]. The discovery
employed is external and it is carried out by the so called information services.
The architecture is symmetric for service consumer and provider as both of
them may act as agreement initiators in WS-Agreement. There is no specific
element to deal with knowledge adaptation during discovery, although the use
of semantic-enabled discovery services could solve that problem. Concerning the
market observation, it is achieved by using a subscription mechanism specified
in the Grid Monitoring Architecture. Like discovery, both the information query
and the third party information is developed by using the information services.
The agreement creation mechanism employed in OGSA is the WS-Agreement
protocol, although a negotiation protocol is also being developed and agreements
for composed services can be created by using the Execution Planning Services.
Concerning the deployment, OGSA is conceived to be deployed as independent
services that are later used by higher-level applications. Finally, elements that
support the decision-making such as the creation of a world model and the types
of information managed about the parties together with the assessment mecha-
nisms and the forms of expressing information and preferences are not in the
scope of the architecture. This is also the case of the proposals preselection,
although Candidate Set Generator could develop that function.

Semantic Web Service Architecture [14] describes an abstract reference
architecture for semantic web service interoperability. In this architecture, the
discovery issues are addressed from the perspective of semantic registries (Match-
makers).The knowledge management is a key point in this architecture expressed
in the specification of different ontologies. In this context, despite the idea of mar-
ket can be induced from this architecture, there is not an explicit element that
actively reacts to different changes in the market (Market observation). This ar-
chitecture is not symmetric due it is highly focused in the organisation that acts
as service consumer and leaves the service provider as a comparatively simple
systems that remain passive during the service trading process. The information
query mechanism can be developed during the engagement phase in the contract



preliminaries interaction. However, there is not specified an interaction with
third parties.The interaction mechanisms related with agreement creation are
based on abstract protocols described in FIPA Conversational Language. There
is an explicit requirement for non-repudiation mechanisms during the enactment
phase. Finally, though it is not specifically stated, this architecture is oriented
toward non-cooperative scenarios.

Web Services Modelling Ontology Full [15] presents an abstract conceptual
architecture for semantic web services and it is oriented to cross-organisational
scenarios. It uses an external discovery based in the Web Service Architecture
and it is symmetric for consumer and provider. It also supports knowledge adap-
tation by using semantic-based service descriptions. However, there is not explicit
information about how to carry out a market observation, the information query
nor third party information. Regarding the information managed about the par-
ties, it uses service and trading information (e.g. supported choreographies) but
it is not stated whether it can use information related to the parties. Like OGSA,
the mechanisms to support decision-making are out of the scope of WSMO-Full.
Therefore, neither the world model, the capacity estimator nor the assessment
mechanisms are covered. The agreement creation mechanisms supported are
specified through the so called contract agreement choreographies. WSMO-Full
includes partial support for decommitment in the post-agreement choreography
but the mechanism is not fully defined. It also partially supports trading protocols
through contract agreement and post-agreement choreographies but it does not
consider the specification of temporal constraints on them. However, WSMO-
Full does not include any support for complex service trading elements such as
a notary or the creation of agreements for composed services. The architecture
seems conceived to operate in a non-cooperative agreement creation, although
there is no explicit limitation in using it in a cooperative environment. Finally,
as it is a conceptual architecture, it does not consider any deployment options.

Adaptive Service Grid [4] has been developed as an intent to create service
providers that quickly adapt to business changes. In particular, the main goal
is to achieve an efficient way of composing services to create more complex ser-
vices with an added value. In the case of symmetric property, the elements that
implement the provider-part and consumer-part of the system in ASG are not
symmetric. The discovery is handled by the so called DDBQuery in a centred way
through a semantic registry (with reasoning capabilities). In this way, though
different ontologies handling are considered as part of the registry there is not an
explicit market that is observed. Concerning the world model, this architecture
specifies an element called ServiceProfiling that stores information about his-
toric interactions with providers creating a relative model of the provider that
is taken into account for the optimisation of the negotiation and selection of
services. The information managed about parties is highly oriented to service;
neither provider nor trading information are described in any of the processes.
This approach leaves open the specific negotiation protocol used to establish
the SLA for each service composed. However, WS-Agreement standard is spec-
ified as an implementation option. ASG can be applied to either cooperative



Table 1. Comparison of abstract architectures

OGSA SWSA WSMO-Full ASG

(1) Yes (distributed) Yes Yes No

(2) No Yes (ontologies) Yes (ontologies) Yes (ontologies)

(3) Yes No No No

(4) Yes No Yes No

(5) Yes Yes No No

(6) Out of scope Out of scope Out of scope Yes

(7) Yes No No No

(8) Out of scope Service, party Service, trading Service

(9) Partial Out of scope No No

(10) WS-Ag Yes, FIPA-CL based Yes, through chor. Yes (e.g. WS-Ag)

(11) No Yes No No

(12) No No Partial No

(13) Yes No Out of scope No

(14) No No Lacks temporal constr. No

(15) Yes No No Yes

(16) Seems coop. Seems non-coop Seems non-coop Both

(17) Both Consumer Both Chiefly Consumer

(18) Independent services Out of scope Out of scope Technologies

(19) Out of scope Out of scope Out of scope Out of scope

(20) Out of scope Semantic info Semantic info Semantic Info

or non-cooperative scenarios. Despite ASG describes the architecture of a com-
posed services provider, from an architectural point of view this case is chiefly
service consumer oriented because it just looks for atomic service providers to
be composed. In ASG, the deployment possibilities are specified in terms of dif-
ferent development technologies and by identifying subsets of elements that are
mandatory and other that can be optional.

5 Conclusions

From the analysis developed in Section 4, we can extract several conclusions: (i)
The discovery process is well supported and most abstract architectures provides
knowledge adaptation; (ii) Most abstract architectures do not cover elements
to support the decision-making such as the world model; (iii) There is little
support for the most advanced features of service trading such as the notary,
the decommitment from established agreements and the trading protocols. Due
to these lacks, some complex service trading scenarios cannot be completely
achieved. Therefore, it may be interesting to develop new abstracts architecture
to deal with those scenarios taking the set of properties obtained in this article
as a starting point.

In summary, the contributions of this paper are: first, we obtain a set of
properties of abstract service trading architectures based on an analysis of several
service trading scenarios, and second, we use these properties to analyse and



compare the most relevant abstract architectures for service trading. In so doing,
we set the basis for the development of a method to select the service trading
architecture most appropriate to the scenario where it is applied.

The future work is twofold. On the one hand, analysing additional service
trading scenarios to identify the properties that an abstract architecture for
service trading must have to successfully operate in them in order to define a
method to select the architecture for each of them. On the other hand, we intend
to extend the work to lower-level properties of non-abstract architectures so that
they cover concrete technologies, protocols and algorithms.

References

1. Molina-Jiménez, C., Pruyne, J., van Moorsel, A.P.A.: The role of agreements in it
management software. In: Architecting Dependable Systems III. (2004) 36–58

2. Ludwig, H., Gimpel, H., Dan, A., Kearney, R.: Template-Based Automated Service
Provisioning - Supporting the Agreement-Driven Service Life-Cycle. In: ICSOC.
(2005) 283–295

3. Ludwig, H.: A Conceptual Framework For Building E-Contracting Infraestructure.
In Corchuelo, R., Wrembel, R., Ruiz-Cortes, A., eds.: Technologies Supporting
Business Solutions. Nova Publishing (2003)

4. Laures, G., Jank, K.: Adaptive Service Grid Reference Architecture.
http://www.asg-platform.org (2005)

5. Global Grid Forum, .: Open Grid Service Architecture. http://www.ggf.org/

documents/GFD.30.pdf (2005)
6. Lee, J., Goodwin, R.: Ontology Management for Large-Scale E-Commerce Appli-

cations. In: DEEC. (2005) 7–15
7. Giunchiglia, F., Yatskevich, M., Giunchiglia, E.: Efficient Semantic Matching. In:

ESWC. (2005) 272–289
8. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M., Sierra,

C.: Automated Negotiation: Prospects, Methods and Challenges. Group Decision
and Negotiation 10 (2001) 199–215

9. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: WS-Agreement Specification (2004)

10. Sandholm, T., Lesser, V.: Leveled commitment contracts and strategic breach.
Games and Economic Behavior 35(1) (2001) 212–270

11. Chung, J.Y., Bichler, M.: Service-oriented enterprise applications and Web service
composition. Inf. Syst. E-Business Management 3(2) (2005) 101–102

12. Wang, Y., Tan, K.L., Ren, J.: Towards autonomous and automatic evaluation
and negotiation in agent-mediated internet marketplaces. Electronic Commerce
Research 5(3 - 4) (2005) 343–365

13. Ludwig, H., Dan, A., Kearney, R.: Cremona: An Architecture and Library For
Creation and Monitoring of WS-Agreements. In: Proc. of the 2nd International
Conference On Service Oriented Computing, ACM Press (2004)

14. Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M.N., Paolucci, M.,
Sheth, A.P., Williams, S.: A Semantic Web Services Architecture. IEEE Internet
Computing 9(5) (2005) 72–81

15. Preist, C.: Agent Mediated Electronic Commerce Research At Hewlett Packard
Labs, Bristol. SIGecom Exch. 2(3) (2001) 18–28


