Abstract
Permutation masks were proposed for reducing the number of holes in Hamming negative selection when applying the r-contiguous or r-chunk matching rule. Here, we show that (randomly determined) permutation masks re-arrange the semantic representation of the underlying data and therefore shatter self-regions. As a consequence, detectors do not cover areas around self regions, instead they cover randomly distributed elements across the space. In addition, we observe that the resulting holes occur in regions where actually no self regions should occur.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. IEEE Computer Society Press, Los Alamitos (1994)
Dasgupta, D., Forrest, S.: Novelty detection in time series data using ideas from immunology. In: Proceedings of the 5th International Conference on Intelligent Systems (1996)
Hofmeyr, S.A.: An Immunological Model of Distributed Detection and its Application to Computer Security. Ph.D thesis, University of New Mexico (1999)
Singh, S.: Anomaly detection using negative selection based on the r-contiguous matching rule. In: Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS), pp. 99–106. Unversity of Kent at Canterbury Printing Unit (2002)
Kim, J., Bentley, P.J.: An evaluating of negative selection in an artificial immune system for network intrusion detection. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 1330–1337 (2001)
Stibor, T., Timmis, J., Eckert, C.: On the appropriateness of negative selection defined over hamming shape-space as a network intrusion detection system. In: Congress On Evolutionary Computation – CEC 2005, pp. 995–1002. IEEE Press, Los Alamitos (2005)
Stibor, T., Timmis, J., Eckert, C.: The link between r-contiguous detectors and k-cnf satisfiability. In: Congress On Evolutionary Computation – CEC 2006. IEEE Press, Los Alamitos (to appear, 2006)
Stibor, T., Timmis, J., Eckert, C.: Generalization regions in hamming negative selection. In: Intelligent Information Processing and Web Mining. Advances in Soft Computing, pp. 447–456. Springer, Heidelberg (2006)
Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 8, 443–473 (2000)
de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)
Perelson, A.S., Oster, G.F.: Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-nonself discrimination. J. Theor. Biol. 81, 645–670 (1980)
Percus, J.K., Percus, O.E., Perelson, A.S.: Predicting the size of the T-cell receptor and antibody combining region from consideration of efficient self-nonself discrimination. Proceedings of National Academy of Sciences USA 90, 1691–1695 (1993)
Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and generalization in an artificial immune system. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, pp. 3–10. Morgan Kaufmann, San Francisco (2002)
Esponda, F., Forrest, S., Helman, P.: A formal framework for positive and negative detection schemes. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics 34, 357–373 (2004)
D’haeseleer, P., Forrest, S., Helman, P.: An immunological approach to change detection: algorithms, analysis, and implications. In: Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy, pp. 110–119. IEEE Computer Society Press, Los Alamitos (1996)
González, F., Dasgupta, D., Niño, L.F.: A randomized real-valued negative selection algorithm. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 261–272. Springer, Heidelberg (2003)
Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 1. Addison-Wesley, Reading (2002)
González, F., Dasgupta, D., Gómez, J.: The effect of binary matching rules in negative selection. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 195–206. Springer, Heidelberg (2003)
Tax, D.M.J.: One-class classification. Ph.D thesis, Technische Universiteit Delft (2001)
Rätsch, G.: Benchmark repository (1998), http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stibor, T., Timmis, J., Eckert, C. (2006). On Permutation Masks in Hamming Negative Selection. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_10
Download citation
DOI: https://doi.org/10.1007/11823940_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37749-8
Online ISBN: 978-3-540-37751-1
eBook Packages: Computer ScienceComputer Science (R0)