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Abstract. The management of complex energy systems where different
power sources are active in a time varying scenario of costs and prices
needs efficient optimization approaches. Usually the scheduling problem
is is formulated as a Mixed Integer Linear Programming (MILP) to guar-
antee the convergence to the global optimum. The goal of this work is
to propose and compare a hybrid technique based on Artificial Immune
System (AIS) and linear programming versus the traditional MILP ap-
proach. Different energy scheduling problem cases are analyzed and re-
sults of the two procedures are compared both in terms of accuracy of
results and convergence speed. The work shows that, on some technical
cases, AIS can efficiently tackle the energy scheduling problem in a time
varying scenario and that its performances can overcome those of MILP.
The obtained results are very promising and make the use of immune
based procedures available for real-time management of energy systems.

1 Introduction

Distributed energy generation systems are becoming more and more widespread
in the power grid. This increase is driven by the growing demand of energy
for industrial and civil purposes and by energy market deregulation. In this
way, the classic passive electric grid with few power plants is overcome by an
active network where dispersed nodes can generate power on their own and,
possibly, they offer power to the grid. This solution has many advantages, some
drawbacks and certainly it requires an accurate energy management. Design and
optimization of the energy local network is, in fact, quite different from the one
of the classical energy grid.

In particular, starting from the fact that loads very often requires both elec-
tric and thermal power, the local system can be of Combined Heat and Power
(CHP) type. The combined production of electric and thermal energy leads to
the use, in a positive way, of the thermal energy usually wasted in the thermody-
namic cycle. This energy can be efficiently employed to satisfy the requirements
of thermal loads both domestic and or industrials. Since heat cannot be effi-
ciently transferred to far sites, its source must be located close to the load and



thus also this characteristic requires that energy is produced in a distributed way
all over the network. The energy management of this system needs to take into
account local loads and generators, with different nominal powers, reliability and
pollution levels and the possible presence of energy storage units. In addition,
all these characteristics and requirements change with time: for instance load
profiles, price of energy bought from or sold to the electrical network etc.. An
accurate scheduling of the system must ensure the use of the most economical
power sources, fulfilling operational constraints and load demand.

The management of the energy system requires the definition of the on/off
status of the machines and the identification of their optimal production profile
of them. When the start-up/shut-down profile is set, the problem can be ap-
proached by means of Linear Programming (LP). The definition of the on/off
status of the sources is referred to as scheduling and it requires the introduc-
tion of logical variables, which define in each time interval (e.g. one hour, one
quarter of an hour etc.) the power source availability. As a consequence, the
complete problem must deal with both continuous (power levels) and integer
(on/off status) variables. This problem can be stated as a Mixed Integer Linear
Programming problem (MILP) [1]. Even if this approach guarantees to find out
the global minimum of the cost function, the use of MILP needs a branch and
bound, or similar approaches, whose computational cost is shown to exponen-
tially increase with the number of branches. Instead of a full LP approach, an
heuristic optimization algorithm can be used to define the on/off status of the
power sources, leaving to an inner LP module the optimization of a particular
configuration. An Artificial Immune System (AIS) algorithm can be efficiently
employed in this phase and its use is shown to be quite efficient if all operational
constraints are embedded inside the scheduling interval definition [2].

In this paper, a comparison of the two techniques, MILP and AIS-LP is
presented, both approaches are described and comparisons are carried out in
terms of results accuracy and convergence speed to the optimum.

2 Definition of energy management problem

The outline of the system under study is represented in Fig. 1, where:

– Pe is the electrical power produced by the CHP;
– Pt is the thermal power produced by the CHP;
– Bt is the heat produced by a boiler which fulfills the thermal load when

production of electric power is neither needed nor economically convenient;
– Dt is the heat produced in the thermodynamic cycle which is not used by

the thermal load and it is thus released into the atmosphere;
– Pp and Ps are the electrical power purchased from or sold to the external

network respectively;
– St is the stored thermal energy;
– Ue and Ut are the electrical and thermal power required by the load;



Fig. 1. Structure of a CHP. Straight lines: electrical power fluxes, dotted lines: thermal
power fluxes.

In each time interval (i), thermal and electrical power of a CHP are linked by a
linear relation

Pt(i) = ktPe(i) (1)

The energy management problem of the CHP system regards the definition of
the best arrangement of production levels of the power unit to minimize the
management costs and fulfilling all loads requirements. The problem is defined
over a scheduling period (e.g. one day, one week etc.) where loads, costs, fares
etc. can change. The scheduling period is subdivided in Nintervals time intervals
of length ∆t. During each interval all CHP characteristics and load data are
assumed to be constant.

Besides plant data, some operational constraints have to be imposed on the
power source like:

– Minimum On Time (MOT): minimum time interval during which CHP must
be on when it is switched on;

– Minimum Shut-down time (MST): minimum time interval which CHP must
be off since it was turned off;

– Maximum ramp rate: maximum power rate of the source

The unit production costs of the node, expressed in AC/kWh, are:

– ce: cost coefficient of electric energy produced by the CHP;
– ct: cost coefficient of thermal energy produced by the boiler;
– cp(i), cs(i): prices of purchased and sold energy at i-th time interval.

By using the previous definitions it is possible to write a global cost function (in
AC) over the scheduling period

fCHP =
Nintervals∑

i=1

[cePe(i) + cp(i)Pp(i) − cs(i)Ps(i) + ctBt(i)] ∆t (2)



The optimization problem can be stated as

minimize fCHP (3)

subject to operational constraints

1. electrical balance: Pe(i) + Pp(i) − Ps(i) = Ue(i);

2. thermal balance: Pt(i) + Bt(i) − Dt(i) +
St(i − 1) − St(i)

∆t
= Ut(i);

3. dissipation of thermal power produced by CHP: Dt(i) − Pt(i) ≤ 0;
4. thermal and electrical CHP characteristic (1): ktPe(i) − Pt(i) = 0;
5. MOT, MST and ramp limit satisfaction.

Variables are bounded by their upper and lower bounds

Pmin
e ≤ Pe(i) ≤ Pmax

e

0 ≤ Bt(i) ≤ Bmax
t

0 ≤ Ps(i)
0 ≤ Pp(i)
0 ≤ Dt(i)
0 ≤ St(i) ≤ Smax

t

(4)

The first bounds do not hold during the starting-up and shutting-down phases.

3 Mixed Integer scheduling approach

The scheduling problem can be directly formulated as a MILP [1, 3]. This means
that the problem is still linear, but it has both continuous and integer vari-
ables. This class of problems can be solved by exact methods like Branch and
Bound technique [4]. The MILP approach requires to define the on/off status of
the CHP as a logical variable δ(i) defined for all i-th time interval. Moreover,
two additional sets of logical variables must be considered to take into account
MOT/MST constraints and up/down ramps [5] (see Fig. 2)

y(i) =
{

1 if CHP turns on at i − th time interval
0 otherwise (5)

z(i) =
{

1 if CHP turns off at i − th time interval
0 otherwise (6)

The complexity of the problem hardly depends on time discretization, because
the finer the discretization the higher the number of integer variables. Besides,
the model of ramp limits, MOT and MST limits introduce several additional
constraints which must be explicitly added to the model. In [5] it is shown that
it is possible to model start-up and shut-down power trajectories with eleven



Fig. 2. Binary variables of MILP approach.

constraints. Finally, it is common to define an upper limit to the number of
turns on and off during the scheduling period Non = Noff = Nchange.

NI∑

i=0

y(i) ≤ Nchange

NI∑

i=0

z(i) ≤ Nchange

(7)

For instance, for a one-day scheduling period with the CHP in one day, and
Non = Noff = 1, this means that CHP can be turned on and off just once.

4 Immune scheduling approach

The second approach is based on the opt-aiNet version [6] of the clonal selec-
tion algorithm. The optimization procedure (AIS-LP) is divided into two nested
stages: the inner one is the LP problem derived in Section 2 which defines the
optimal production levels at each time interval once the on/off profiles are de-
fined. The outer stage is responsible defining the on/off status of the generation
units.

It is useful to use as degrees of freedom of the optimization the time ampli-
tudes of the on and off intervals τj of the CHP (Fig. 3). These values are treated
as integer variables representing the number of on and off intervals of each con-
trol period. The variables are then decoded in terms of 0-1 strings representing,
for each utility, its on/off status. This assumption drastically simplify the op-
timization search. The number of available solutions is in fact equal to MN ,
where N is the number of degrees of freedom and M the number of possible val-
ues assumed by each variable. A fine discretization does not affect the number
of variables but only their range of values M , thus the overall complexity of the



problem is polynomial. With a MILP approach, M is always equal to 2, because
the problem is modeled by binary variables. The time discretization affects the
value of N , giving rise to an exponential complexity of the problem. Moreover,
in AIS-LP approach, the value of M is restricted when including MOT/MST
constraints. Thus the modeling of technical constraints reduces the search space
allowing a faster convergence to the optimal solution. Table 1 The definition of

Table 1. Number of available configurations for two time discretizations

∆t = 1 hour ∆t = 0.25 hour
MILP AIS-LP MILP AIS-LP

M 2 24 2 96
N 24 2 96 2

MN 16.8 × 106 576 79.2 × 1027 9216

on/off intervals τ as optimization variables requires an algorithm without com-
plex operators. This consideration is due to the fact that it is not easy to keep
the feasibility of solutions. Thus algorithms with crossover and recombination
operators, like Genetic Algorithm and Evolution Strategy must be excluded a
priori. The AIS has the advantage of using the mutation operator only, and its
memory capability will be exploited in a future work to handle the time varying
scenarios in real time optimization. The AIS-LP performances can be enhanced

Fig. 3. Representation of the variables for the AIS-LP approach: intervals τj .

by using problem-specific information:

– creation of feasible initial population which satisfies the equality constraints
∑

i

τi = Nintervals − NonMOT − NoffMST = Nfree (8)



– modified mutation operator to generate of feasible-only clones.

For these reasons some immune operators must be customized to solve the spe-
cific problem. In particular the mutation operator is not related to the actual
fitness of the parent cell. Algorithms 1 and 2 report the pseudocodes of the
generator of new cells and mutation operator, respectively.

The use of problem-specific information drastically decreases the dimension
of the search space [2], making the AIS-LP approach more suited for high di-
mensional or fine discretized problems [7].

Algorithm 1 New cells generation
1: for all newcells do
2: sum ← 0
3: for i ← 1, Nintervals do # Random initialization
4: cell(i) ← random()
5: sum = sum + cell(i)
6: end for
7: for i ← 1, Nintervals do # Normalization and interization
8: cell(i) ← INT(Nfree × cell(i)/sum)
9: end for

10: end for

Algorithm 2 Mutation
1: for all clones do
2: for i ← 1, Nintervals do
3: mutaz(i) ← random()
4: if 0 ≤ mutaz(i) ≤ 1/3 then mutaz(i) ← −1
5: if 1/3 ≤ mutaz(i) ≤ 2/3 then mutaz(i) ← 1
6: if 2/3 ≤ mutaz(i) ≤ 1 then mutaz(i) ← 0
7: end for
8: for i ← 1, Nintervals do
9: clone(i) = parent(i) + mutaz(i) − mutaz(i − 1) # Feasible mutation

10: if clone(i) ≤ xlow(i) then # Fix mutation to the lower bound
11: clone(i) ← xlow(i)
12: mutaz(i) ← 0
13: end if
14: if clone(i) ≥ xup(i) then # Fix mutation to the upper bound
15: clone(i) ← xup(i)
16: mutaz(i) ← 0
17: end if
18: end for
19: end for



5 Proof of principle test case

MILP and AIS-LP are tested on a simple but effective energy management prob-
lem. The structure of the CHP node is the one of Fig. 1; the operational data
of the devices are reported in Table 2. The thermal storage unit is considered to
have a maximum capacity of 300 kWh. Energy price profiles are shown in Fig.

Table 2. Main operational data used in the test case

Pmin
e Pmax

e MOT MST Ramp limit
kW kW hour hour kW

h

CHP 200 600 5 4 170
Boiler 0 800 none none none

4. Several scheduling instances are solved with a quarter of hour time sampling

Fig. 4. Profile of costs purchased (cp) and sold (cs) electrical power.

(∆t = 0.25 hours), thus a one day scheduling period has Nintervals = 96, two
days scheduling Nintervals = 192 etc. Results are compared in terms of conver-
gence time and number of objective function calls. It must be remarked that
a comparison in terms of the mere number of objective function calls can be
misleading because the linear problem solved by MILP and AIS-LP are differ-
ent. These differences can be explained by noting that the number of variables,
number of constraints and number of non zero elements in coefficients matrix



are not the same for two formulations. The main differences in the LP formula-
tion between AIS-LP and MILP are summarized in Table 3. The larger MILP

Table 3. Comparison of dimensions of different LP problems (NMOT: number of min-
imum on time intervals, NMST: number of minimum shutdown time intervals, Nup:
number of time intervals needed to reach, Pmin

e during start-up phases, Ndw: number
of time intervals needed to reach zero power during shut-down phases)

AIS-LP MILP
nr. of constraints 6Nintervals 21Nintervals + 2
nr. of variables 7Nintervals 10Nintervals

matrix elements 35N2
intervals 210N2

intervals

non zeros 14Nintervals (48 + NMOT + NMST + 8Ndw + 8Nup)Nintervals

model is due to the fact that operational constraints (ramp limits and MOT
and MST constraints) have to be taken into account directly in the linear model
whereas AIS-LP approach manage these limits in the external loop, as described
in Section 4.

The parameter setting of AIS-LP is:

– population cardinality: 10;
– number of clones: 5;
– number of inner iterations: 5;
– convergence criterion: the search ends if the objective function value does

not improve for more than ten external generations.

Results are averaged on 10 independent runs to take into account the statistical
variation of performances due to the stochastic nature of the algorithm.

6 Discussion

In Fig. 5 MILP and AIS-LP are compared with respect to the computational
time (in seconds) to converge to the optimal value on a Pentium IV 2.8 GHz.
These data are displayed versus dimension of problem, represented by the value
of Nintervals.

Fig. 5 shows two important properties. Firstly, there is a crossover between
the two curves of MILP and AIS-LP. This fact leads to the consideration that the
computational time of MILP approach becomes impracticable for large instances,
i.e. for fine discretization and/or long period managements.

Secondly, by analyzing each curve, it is possible to find that MILP has an
exponential dependence of the computational time on the cardinality of the
problem, while AIS-LP has a quadratic rule. The previous considerations are
confirmed by the analysis of Fig. 6 which shows the number of LP problems
solved by the two techniques. In this case the number of LP problem is linearly



Fig. 5. Computational time of the two procedures vs number of time intervals. AIS-LP
computational time has a quadratic dependence on the cardinality of the problem.

Fig. 6. Number of objective function calls of the two procedures vs number of time
intervals. The number of LP problems solved by AIS-LP is linearly dependent on time
discretization.



dependent on the cardinality of the problem. It is also worth noting that the
solutions found by AIS-LP and MILP models share the same objective function
values, or are slightly different. This fact shows that AIS-LP procedure converges
to the exact solution.

Figs. 7, 8 and 9 show the electrical and thermal power and energy storage
profiles of a one day scheduling. The following remarks can be made:

Fig. 7. One day electrical power profiles.

a) the CHP starts early in the morning in order to store heat energy and satisfy
the first thermal load peak of the day. Excess electrical power is sold to the
external network;

b) the electrical load is always supplied by the CHP except for few time inter-
vals; by looking at Fig. 8 it is possible to note that CHP production never
follows thermal load. This fact is explained by the role of thermal storage;

c) the boiler is requested to produce thermal power only during night hours,
when the CHP electrical production is neither needed nor economical;

d) during night hours, thermal storage reaches its upper limit for some time
intervals. This fact means that the possibility of storing more thermal energy
would be useful to reduce costs.

The effectiveness of the optimal scheduling is evidenced by referring the op-
timal objective function to the cost of a non cogenerative system, where the
electrical load is supplied by the external network and the thermal power is



Fig. 8. One day thermal power profiles.

Fig. 9. One day thermal storage energy profile.



produced by the boiler only. In this case

fnoncogenerative =
Nintervals∑

i=1

[cp(i)Ue(i) + ctUt(i)] ∆t (9)

f% =
fCHP

fnoncogenerative
100. (10)

The one day scheduling allows to save money of about 34% (f% = 66%)
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