Skip to main content

Theoretical Basis of Novelty Detection in Time Series Using Negative Selection Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4163))

Abstract

Theoretical basis of Novelty Detection in Time Series and its relationships with State Space Reconstruction are discussed. It is shown that the methods for estimation of optimal state-space reconstruction parameters may be used for the estimation of immunological novelty detection system’s parameters. This is illustrated with a V-detector system detecting novelties in Mackey-Glass time series.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Markou, M., Singh, S.: Novelty Detection: A Review. Signal Processing 83(12), 2481–2497 (2003)

    Article  MATH  Google Scholar 

  2. Kim, J., Bentley, P.: An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection. In: GECCO 2001, pp. 1330–1337 (2001)

    Google Scholar 

  3. Balthrop, J., Forrest, S., Glickman, M.R.: Revisiting LISYS: Parameters and Normal Behavior. In: CEC 2002, pp. 1045–1050 (2002)

    Google Scholar 

  4. Esponda, F., Forrest, S., Helman, P.: A Formal Framework for Positive and Negative Detection Schemes. IEEE Trans. Syst., Man Cybernet. 34, 357–373 (2004)

    Article  Google Scholar 

  5. Esponda, F., Forrest, S., Helman, P.: The Crossover Closure and Partial Match Detection. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 249–260. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. González, F.: A Study of Artificial Immune Systems Applied to Anomaly Detection. Ph.D thesis, USA. The University of Memphis (2003)

    Google Scholar 

  7. Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Ji, Z., Dasgupta, D.: Augmented Negative Selection Algorithm with Variable-Coverage Detectors. In: CEC 2004, pp. 1081–1088 (2004)

    Google Scholar 

  9. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. In: IEEE Symposium on Research in Security and Privacy (1994)

    Google Scholar 

  10. Dasgupta, D., Forrest, S.: Novelty Detection in Time Series Data using Ideas from Immunology. In: 5th International Conference on Intelligent Systems (1996)

    Google Scholar 

  11. Taylor, D., Corne, D.W.: An Investigation of the Negative Selection Algorithm for Fault Detection in Refrigeration Systems. LNCS, vol. 278 (2003)

    Google Scholar 

  12. Dasgupta, D., Forrest, S.: Tool Breakage Detection in Milling Operations using a Negative-Selection Algorithm. Tech. rep. CS95-5, Computer Science, University of New Mexico (1995)

    Google Scholar 

  13. Hofmeyr, S.A.: An Interpretative Introduction to the Immune System. Tech. rep. University of New Mexico (1999)

    Google Scholar 

  14. Dasgupta, D., Gonzalez, F.: An Immunity-Based Technique to Characterize Intrusions in Computer Networks. IEEE Trans. Evol. Comput. 6, 1081–1088 (2002)

    Google Scholar 

  15. González, F., Dasgupta, D.: An Immunogenetic Technique to Detect Anomalies in Network Traffic. In: GECCO 2002 (2002)

    Google Scholar 

  16. Dasgupta, D., Forrest, S.: Artificial Immune Systems in Industrial Applications. In: IPMM 1999 (1999)

    Google Scholar 

  17. Hart, E., Timmis, J.I.: Application areas of AIS: The past, the present and the future. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 483–497. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Ji, Z., Dasgupta, D.: Estimating the Detector Coverage in a Negative Selection. In: GECCO 2005 (2005)

    Google Scholar 

  19. Dasgupta, D., Krishnakumar, K.T., Wong, D., Berry, M.: Negative selection algorithm for aircraft fault detection. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Kugiumtzis, D.: State Space Reconstruction Parameters in the Analysis of Chaotic Time Series - the Role of the Time Window Length. Physica D 95, 13–28 (1996)

    Article  MATH  Google Scholar 

  21. Small, M., Tse, C.K.: Optimal embedding parameters: A modeling paradigm. Physica D 194, 283–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Robinson, J.C.: A topological delay embedding theorem for infinite-dimensional dynamical systems. Nonlinearity 18(5), 2135–2143 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Let. 45, 712–716 (1980)

    Article  Google Scholar 

  24. Gibson, J.F., Farmer, J.D., Casdagli, M., Eubank, S.: An analytic approach to practical state space reconstruction. Physica D 57 (1992)

    Google Scholar 

  25. Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. Journal of Stat. Phys. 65, 579–616 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  27. Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Physica D 20, 217–236 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D 73, 82–98 (1993)

    Article  Google Scholar 

  29. Tsonis, A.A.: Chaos: From Theory to Applications. Plenum Press, New York (1992)

    Google Scholar 

  30. Takens, F.: Detecting strange attractors in turbulence, Dynamical Systems and Turbulence. Lecturer Notes in Mathematics, vol. 898, pp. 366–381 (1981)

    Google Scholar 

  31. Mane, R.: On the dimension of the compact invariant sets of certain nonlinear maps. In: Dynamical systems and turbulence, Warwick (1981)

    Google Scholar 

  32. Bünner, M.J., Ciofini, M., Giaquinta, A., Hegger, R., Kantz, H., Meucci, R., Politi, A.: Recons-truction of systems with delayed feedback: I. Theory. EPJ D 10(2) (2000)

    Google Scholar 

  33. Sharif, S.S., Taylor, J.H.: Chaos in Nonlinear Dynamical Systems. Interim Report on Vibration Mechanisms of the EH101 Helicopter (2001)

    Google Scholar 

  34. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. Rev. A 45, 3403–3411 (1992)

    Article  Google Scholar 

  35. Ataei, M., Lohmann, B., Khaki-Sedigh, A., Lucas, C.: Model based method for estimating an attractor dimension from uni/multivariate chaotic time series with application to Bremen climatic dynamics. Chaos, Solutons and Fractals 19, 1131–1139 (2004)

    Article  MATH  Google Scholar 

  36. Froehling, H., Crutchfield, J.P., Farmer, D., Packard, N.H., Show, R.: On determining the dimension of chaotic flows. Physica D 3(3), 605–617 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys.Rev. A 45, 3403–3411 (1992)

    Article  Google Scholar 

  38. Kennel, M.B., Abarbanel, H.D.I.: False neighbors and false strands: A reliable minimum embedding dimension algorithm. Tech.rep., Institute for Nonlinear Science and Department of Physics, University of California, San Diego, Mail Code 0402, La Jolla, CA 92093-0402

    Google Scholar 

  39. Liebert, W., Pawelzik, K., Schuster, H.G.: Optimal embeddings of chaotic attractors from topological considerations. Europhys. Lett. 14, 521 (1991)

    Google Scholar 

  40. Aleksic, Z.: Estimating the embedding dimension. Physica D 52 (1991)

    Google Scholar 

  41. Buzug, T., Pfister, G.: Comparison of algorithms calculating optimal embedding parameters for delay time coordinates. Physica D 58, 127–137 (1992)

    Article  Google Scholar 

  42. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D (1983)

    Google Scholar 

  43. Kugiumtzis, D., Christophersen, N.: State Space Reconstruction: Method of Delays vs Singular Spectrum Approach. Report No 236, Dept. of Informatics, Univ. of Oslo (1997)

    Google Scholar 

  44. Casdagli, M., Eubank, S., Farmer, J.D., Gibson, J.: State space reconstruction in the presence of noise. Physica D 51, 52–98 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  45. Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  46. Lorenz, E.N.: Deterministic non-periodic flow. J. of Atmospheric Science 357 (1963)

    Google Scholar 

  47. Stibor, T., Timmis, J.I., Eckert, C.: A comparative study of real-valued negative selection to statistical anomaly detection techniques. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 262–275. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  48. Ebner, M., Breunig, H.G., Albert, J.: On the Use of Negative Selection in an Artificial Immune System. In: GECCO 2002 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pasek, R. (2006). Theoretical Basis of Novelty Detection in Time Series Using Negative Selection Algorithms. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_29

Download citation

  • DOI: https://doi.org/10.1007/11823940_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37749-8

  • Online ISBN: 978-3-540-37751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics