Abstract
Theoretical basis of Novelty Detection in Time Series and its relationships with State Space Reconstruction are discussed. It is shown that the methods for estimation of optimal state-space reconstruction parameters may be used for the estimation of immunological novelty detection system’s parameters. This is illustrated with a V-detector system detecting novelties in Mackey-Glass time series.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Markou, M., Singh, S.: Novelty Detection: A Review. Signal Processing 83(12), 2481–2497 (2003)
Kim, J., Bentley, P.: An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection. In: GECCO 2001, pp. 1330–1337 (2001)
Balthrop, J., Forrest, S., Glickman, M.R.: Revisiting LISYS: Parameters and Normal Behavior. In: CEC 2002, pp. 1045–1050 (2002)
Esponda, F., Forrest, S., Helman, P.: A Formal Framework for Positive and Negative Detection Schemes. IEEE Trans. Syst., Man Cybernet. 34, 357–373 (2004)
Esponda, F., Forrest, S., Helman, P.: The Crossover Closure and Partial Match Detection. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 249–260. Springer, Heidelberg (2003)
González, F.: A Study of Artificial Immune Systems Applied to Anomaly Detection. Ph.D thesis, USA. The University of Memphis (2003)
Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004)
Ji, Z., Dasgupta, D.: Augmented Negative Selection Algorithm with Variable-Coverage Detectors. In: CEC 2004, pp. 1081–1088 (2004)
Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. In: IEEE Symposium on Research in Security and Privacy (1994)
Dasgupta, D., Forrest, S.: Novelty Detection in Time Series Data using Ideas from Immunology. In: 5th International Conference on Intelligent Systems (1996)
Taylor, D., Corne, D.W.: An Investigation of the Negative Selection Algorithm for Fault Detection in Refrigeration Systems. LNCS, vol. 278 (2003)
Dasgupta, D., Forrest, S.: Tool Breakage Detection in Milling Operations using a Negative-Selection Algorithm. Tech. rep. CS95-5, Computer Science, University of New Mexico (1995)
Hofmeyr, S.A.: An Interpretative Introduction to the Immune System. Tech. rep. University of New Mexico (1999)
Dasgupta, D., Gonzalez, F.: An Immunity-Based Technique to Characterize Intrusions in Computer Networks. IEEE Trans. Evol. Comput. 6, 1081–1088 (2002)
González, F., Dasgupta, D.: An Immunogenetic Technique to Detect Anomalies in Network Traffic. In: GECCO 2002 (2002)
Dasgupta, D., Forrest, S.: Artificial Immune Systems in Industrial Applications. In: IPMM 1999 (1999)
Hart, E., Timmis, J.I.: Application areas of AIS: The past, the present and the future. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 483–497. Springer, Heidelberg (2005)
Ji, Z., Dasgupta, D.: Estimating the Detector Coverage in a Negative Selection. In: GECCO 2005 (2005)
Dasgupta, D., Krishnakumar, K.T., Wong, D., Berry, M.: Negative selection algorithm for aircraft fault detection. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 1–13. Springer, Heidelberg (2004)
Kugiumtzis, D.: State Space Reconstruction Parameters in the Analysis of Chaotic Time Series - the Role of the Time Window Length. Physica D 95, 13–28 (1996)
Small, M., Tse, C.K.: Optimal embedding parameters: A modeling paradigm. Physica D 194, 283–296 (2004)
Robinson, J.C.: A topological delay embedding theorem for infinite-dimensional dynamical systems. Nonlinearity 18(5), 2135–2143 (2005)
Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Let. 45, 712–716 (1980)
Gibson, J.F., Farmer, J.D., Casdagli, M., Eubank, S.: An analytic approach to practical state space reconstruction. Physica D 57 (1992)
Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. Journal of Stat. Phys. 65, 579–616 (1991)
Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192 (1971)
Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Physica D 20, 217–236 (1986)
Rosenstein, M.T., Collins, J.J., De Luca, C.J.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D 73, 82–98 (1993)
Tsonis, A.A.: Chaos: From Theory to Applications. Plenum Press, New York (1992)
Takens, F.: Detecting strange attractors in turbulence, Dynamical Systems and Turbulence. Lecturer Notes in Mathematics, vol. 898, pp. 366–381 (1981)
Mane, R.: On the dimension of the compact invariant sets of certain nonlinear maps. In: Dynamical systems and turbulence, Warwick (1981)
Bünner, M.J., Ciofini, M., Giaquinta, A., Hegger, R., Kantz, H., Meucci, R., Politi, A.: Recons-truction of systems with delayed feedback: I. Theory. EPJ D 10(2) (2000)
Sharif, S.S., Taylor, J.H.: Chaos in Nonlinear Dynamical Systems. Interim Report on Vibration Mechanisms of the EH101 Helicopter (2001)
Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. Rev. A 45, 3403–3411 (1992)
Ataei, M., Lohmann, B., Khaki-Sedigh, A., Lucas, C.: Model based method for estimating an attractor dimension from uni/multivariate chaotic time series with application to Bremen climatic dynamics. Chaos, Solutons and Fractals 19, 1131–1139 (2004)
Froehling, H., Crutchfield, J.P., Farmer, D., Packard, N.H., Show, R.: On determining the dimension of chaotic flows. Physica D 3(3), 605–617 (1981)
Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys.Rev. A 45, 3403–3411 (1992)
Kennel, M.B., Abarbanel, H.D.I.: False neighbors and false strands: A reliable minimum embedding dimension algorithm. Tech.rep., Institute for Nonlinear Science and Department of Physics, University of California, San Diego, Mail Code 0402, La Jolla, CA 92093-0402
Liebert, W., Pawelzik, K., Schuster, H.G.: Optimal embeddings of chaotic attractors from topological considerations. Europhys. Lett. 14, 521 (1991)
Aleksic, Z.: Estimating the embedding dimension. Physica D 52 (1991)
Buzug, T., Pfister, G.: Comparison of algorithms calculating optimal embedding parameters for delay time coordinates. Physica D 58, 127–137 (1992)
Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D (1983)
Kugiumtzis, D., Christophersen, N.: State Space Reconstruction: Method of Delays vs Singular Spectrum Approach. Report No 236, Dept. of Informatics, Univ. of Oslo (1997)
Casdagli, M., Eubank, S., Farmer, J.D., Gibson, J.: State space reconstruction in the presence of noise. Physica D 51, 52–98 (1991)
Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)
Lorenz, E.N.: Deterministic non-periodic flow. J. of Atmospheric Science 357 (1963)
Stibor, T., Timmis, J.I., Eckert, C.: A comparative study of real-valued negative selection to statistical anomaly detection techniques. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 262–275. Springer, Heidelberg (2005)
Ebner, M., Breunig, H.G., Albert, J.: On the Use of Negative Selection in an Artificial Immune System. In: GECCO 2002 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pasek, R. (2006). Theoretical Basis of Novelty Detection in Time Series Using Negative Selection Algorithms. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_29
Download citation
DOI: https://doi.org/10.1007/11823940_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37749-8
Online ISBN: 978-3-540-37751-1
eBook Packages: Computer ScienceComputer Science (R0)