Abstract
Predicting the virulence of new Influenza strains is an important problem. The solution to this problem will likely require a combination of in vitro and in silico tools that are used iteratively. We describe the agent-based modeling component of this program and report preliminary results from both the in vitro and in silico experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
World Health Organization: Influenza. Fact Sheet 211, World Health Organization (Revised March 2003), Available Online at: http://www.who.int/mediacentre/factsheets/fs211/
Webster, R.G., Peiris, M., Chen, H., Guan, Y.: H5N1 outbreaks and enzootic influenza. Emerg. Infect. Dis. 12(1), 3–8 (2006)
Tumpey, T.M., Basler, C.F., Aguilar, P.V., Zeng, H., Solórzano, A., Swayne, D.E., Cox, N.J., Katz, J.M., Taubenberger, J.K., Palese, P., GarcÃa-Sastre, A.: Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310(5745), 77–80 (2005)
Tumpey, T.M., GarcÃa-Sastre, A., Taubenberger, J.K., Palese, P., Swayne, D.E., Pantin-Jackwood, M.J., Schultz-Cherry, S., Solórzano, A., Van Rooijen, N., Katz, J.M., Basler, C.F.: Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: Functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 79(23), 14933–14944 (2005)
Belz, G.T., Wodarz, D., Diaz, G., Nowak, M.A., Doherty, P.C.: Compromized influenza virus-specific CD8 + -T-cell memory in CD4 + -T-cell-deficient mice. J. Virol. 76(23), 12388–12393 (2002)
Fritz, R.S., Hayden, F.G., Calfee, D.P., Cass, L.M.R., Peng, A.W., Alvord, W.G., Strober, W., Straus, S.E.: Nasal cytokine and chemokine response in experimental influenza A virus infection: Results of a placebo-controlled trial of intravenous zanamivir treatment. J. Infect. Dis. 180, 586–593 (1999)
Kilbourne, E.D.: Influenza. Plenum Medical Book Company, New York (1987)
Larson, E., Dominik, J., Rowberg, A., Higbee, G.: Influenza virus population dynamics in the respiratory tract of experimentally infected mice. Infect. Immun. 13(2), 438–447 (1976)
Bocharov, G.A., Romanyukha, A.A.: Mathematical model of antiviral immune response III. Influenza A virus infection. J. Theor. Biol. 167(4), 323–360 (1994)
Baccam, P., Beauchemin, C., Macken, C.A., Hayden, F.G., Perelson, A.S.: Kinetics of influenza A virus infection in humans. J. Virol. 80(15) (2006)
Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for influenza A viral infections. J. Theor. Biol. 232(2), 223–234 (2005) (Draft available on arXiv:q-bio.CB/0402012)
Celada, F., Seiden, P.E.: A computer model of cellular interactions in the immune system. Immunol. Today 13(2), 56–62 (1992)
Efroni, S., Harel, D., Cohen, I.R.: Toward rigorous comprehension of biological complexity: Modeling, execution, and visualization of thymic T-cell maturation. Genome Res. 13(11), 2485–2497 (2003)
Meier-Schellersheim, M., Mack, G.: SIMMUNE, a tool for simulating and analyzing immune system behavior. arXiv:cs.MA/9903017 (1999)
Polys, N.F., Bowman, D.A., North, C., Laubenbacher, R.C., Duca, K.: PathSim visualizer: An Information-Rich Virtual Environment framework for systems biology. In: Brutzman, D.P., Chittaro, L., Puk, R. (eds.) Proceeding of the Ninth International Conference on 3D Web Technology, Web3D 2004, Monterey, California, USA, April 5–8, 2004, pp. 7–14. ACM Press, New York (2004)
Warrender, C.E.: CyCells (2005), Computer Software distributed on SourceForge under the GNU GPL at: http://sourceforge.net/projects/cycells
Segovia-Juarez, J.L., Ganguli, S., Kirschner, D.: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231(3), 357–376 (2004)
Warrender, C., Forrest, S., Koster, F.: Modeling intercellular interactions in early Mycobaterium infection. B. Math. Biol. (in press)
Edelstein-Keshet, L., Spiros, A.: Exploring the formation of Alzheimer’s disease senile plaques in silico. J. Theor. Biol. 216(3), 301–326 (2002)
Abbott, R.G., Forrest, S., Pienta, K.J.: Simulating the hallmarks of cancer. Artif. Life (in press, 2006)
Gerety, R., Spencer, S.L., Pienta, K.J., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Comput. Biol. (in review, 2006)
González-GarcÃa, I., Solé, R.V., Costa, J.: Metapopulation dynamics and spatial heterogeneity in cancer. PNAS 99(20), 13085–13089 (2002)
Maley, C.C., Forrest, S.: Exploring the relationship between neutral and selective mutations in cancer. Artif. Life 6(4), 325–345 (2000)
Maley, C.C., Forrest, S.: Modeling the role of neutral and selective mutations in cancer. In: Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Artificial Life VII: Proceedings of the 7th International Conference on Artificial Life, pp. 395–404. MIT Press, Cambridge (2000)
Maley, C.C., Reid, B.J., Forrest, S.: Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: Simulating benign cell boosters and selection for chemosensitivity. Cancer Epidem. Biomar. 13(8), 1375–1384 (2004)
Strain, M.C., Richman, D.D., Wong, J.K., Levine, H.: Spatiotemporal dynamics of HIV propagation. J. Theor. Biol. 218(1), 85–96 (2002)
Zorzenon dos Santos, R.M., Coutinho, S.: Dynamics of HIV infection: A cellular automata approach. Phys. Rev. Lett. 87(16) (2001)
Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y.: Influenza virus receptors in the human airway. Nature 440(7083), 435–436 (2006)
van Riel, D., Munster, V.J., de Wit, E., Rimmelzwaan, G.F., Fouchier, R.A., Osterhaus, A.D., Kuiken, T.: H5N1 virus attachment to lower respiratory tract. Science 312(5772), 399 (2006); Originally published in Science Express on March 23, 2006
Östreich, T., Bitterberg, T., et al.: Transcode (2001). Computer software distributed under the GNU GPL at: http://www.transcoding.org
Beauchemin, C.: MASyV: A Multi-Agent System Visualization package (2003) Computer software distributed on SourceForge under the GNU GPL at: http://masyv.sourceforge.net
Beauchemin, C.: Probing the effects of the well-mixed assumption on viral infection dynamics. J. Theor. Biol. (in press, 2006); Draft available on arXiv:q-bio.CB/0505043
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beauchemin, C., Forrest, S., Koster, F.T. (2006). Modeling Influenza Viral Dynamics in Tissue. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_3
Download citation
DOI: https://doi.org/10.1007/11823940_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37749-8
Online ISBN: 978-3-540-37751-1
eBook Packages: Computer ScienceComputer Science (R0)