

Articulation and Clarification of the Dendritic
Cell Algorithm

Julie Greensmith1 , Uwe Aickelin1 , and Jamie Twycross1

CS&IT, University of Nottingham, UK, NG8 1BB.

jqg, uxa, jpt@cs.nott.ac.uk

Abstract. The Dendritic Cell algorithm (DCA) is inspired by recent
work in innate immunity. In this paper a formal description of the DCA
is given. The DCA is described in detail, and its use as an anomaly
detector is illustrated within the context of computer security. A port
scan detection task is performed to substantiate the influence of signal
selection on the behaviour of the algorithm. Experimental results provide
a comparison of differing input signal mappings.

Keywords - dendritic cells, artificial immune systems, anomaly detection

1 Introduction

Artificial immune systems (AIS) are a collection of algorithms developed from
models or abstractions of the function of the cells of the human immune system.
The first, and arguably the most obvious, application for AIS is in the protection
of computers and networks, through virus and intrusion detection[2]. In this
paper we present an AIS approach to intrusion detection based on the Danger
Theory, through the development of an algorithm based on the behaviour of
Dendritic Cells (DCs). DCs have the power to suppress or activate the immune
system through the correlation of signals from an environment, combined with
location markers in the form of antigen. A DCs function is to instruct the immune
system to act when the body is under attack, policing the tissue for potential
sources of damage. DCs are natural anomaly detectors, the sentinel cells of the
immune system, and therefore the development of a DC based algorithm was
only a matter of time. The Dendritic Cell Algorithm (DCA) was introduced in
2005 and has demonstrated potential as a classifier for a static machine learning
data set[4] and anomaly detector for real-time port scan detection[5]. The DCA
differs from other AIS algorithm for the following reasons:

– multiple signals are combined and are a representation of environment or
context information

– signals are combined with antigen in a temporal and distributed manner
– pattern matching is not used to perform detection, unlike negative selec-

tion[6]
– cells of the innate immune system are used as inspiration, not the adaptive

immune cells and unlike clonal selection, no dynamic learning is attempted

The aim of this paper is to demonstrate the anomaly detection capabilities of
the DCA and to clarify which features of the algorithm facilitate detection.

2 Dendritic Cells in vivo

The DCA is based on the function of dendritic cells whose primary role is as an
antigen presenting cell. DCs behave very differently to the cells of the adaptive
immune system. Before describing the function of the algorithm we give a general
overview of DC biology, introducing different cells, organs and their behaviour.
More information on natural DCs can be found in [9].

In vivo, DCs can perform a number of different functions, determined by their
state of maturation. Modulation between these states is facilitated by the de-
tection of signals within the tissue - namely danger signals, PAMPs (pathogenic
associated molecular patterns), apoptotic signals (safe signals) and inflammatory
cytokines which are described below. The maturation state of a DC is determ-
ined by the relative concentrations of these four types of signal. The state of
maturity of a DC influences the response by T-cells, to either an immunogenic
or tolerogenic state, for a specific antigen. Immature DCs reside in the tissue
where they collect antigenic material and are exposed to signals. Based on the
combinations of signals received, maturation of the DCs occurs generating two
terminal differentiation states, mature or semi-mature. Mature DCs have an
activating effect while semi-mature DCs have a suppressive effect. The different
output signals (termed output cytokines) generated by the two terminal states of
DCs differ sufficiently to provide two different contexts for antigen presentation,
shown abstractly in Figure 1.

Semi-mature

Immature

-collect antigen
-receive signals
-in tissue

Safe Signals

Danger Signals
PAMPS

Inflammatory CKs

-present antigen
-produce costimulation
-provide tolerance cytokines
-in lymph node

Mature

-present antigen
-produce costimulation
-provide reactive cytokines
-in lymph node

Fig. 1. An abstract view of DC maturation and signals required for differenti-
ation. CKs denote cytokines.

The characteristics of the relevant signals are summarised below:

– PAMPS are pre-defined bacterial signatures, causing the maturation of im-
mature DCs to mature DCs through expression of ‘mature cytokines’.

– Danger signals are released as a result of damage to tissue cells, also increas-
ing mature DC cytokines, and have a lower potency than PAMPs.

– Safe signals are released as a result of regulated cell death and cause an
increase in semi-mature DC cytokines, and reduce the output of mature DC
cytokines

– Inflammatory cytokines are derived from general tissue distress and amplify
the effects of the other three signals but are not sufficient to cause any effect
on immature DCs when used in isolation.

3 Dendritic Cells in silico

The Dendritic Cell Algorithm (DCA) was developed as part of the Danger Pro-
ject[1], which aims to find the missing link between AIS and Intrusion Detection
through the application of the danger theory[8]. The danger theory proposes
that the immune system responds when damage to the host is detected, rather
than discriminating between self and non-self proteins. The project encompasses
artificial tissue[3] and T-cells[7], and the libtissue framework[11]. The DCs are
the detection component developed within this project.

3.1 Libtissue

Libtissue is a software system which allows the implementation and testing of

AIS algorithms on real-world problems based on principles of innate immuno-
logy [10], [11]. It allows researchers to implement AIS algorithms as a collection
of cells, antigen and signals interacting within a tissue compartment. The im-
plementation has a client/server architecture, separating data collection from
data processing. Input data to the tissue compartment is generated by sensors
monitoring environmental, behavioural or context data through the libtissue
client, transforming this data into antigen and signals. AIS algorithms can be
implemented within the libtissue server, as libtissue provides a convenient
programming environment. Both client and server APIs allow new antigen and
signal sources to be added to libtissue servers, and the testing of the same
algorithm with a number of different data sources. Input data from the tissue
client is represented in a tissue compartment contained on the tissue server.
A tissue compartment is a space in which cells, signals and antigen interact.
Each tissue compartment has a fixed-size antigen store where antigen provided
by libtissue clients is placed. The tissue compartment also stores levels of
signals, set either by tissue clients or cells.

3.2 Abstract View of the DCA

The DCA is implemented as a libtissue tissue server. Input signals are combined
with a second source of data, such as a data item ID, or program ID num-
ber. This is achieved through using a population of artificial DCs to perform

aggregate sampling and data processing. Using multiple DCs means that mul-
tiple data items in the form of antigen are sampled multiple times. If a single
DC presents incorrect information, it becomes inconsequential provided that
the majority of DCs derive the correct context. The sampling of data is com-
bined with context information received during the antigen collection process.
Different combinations of input signals result in two different antigen contexts.
Semi-mature antigen context implies antigen data was collected under normal
conditions, whereas a mature antigen context signifies a potentially anomalous
data item. The nature of the response is determined by measuring the num-
ber of DCs that are fully mature, represented by a value, MCAV - the mature
context antigen value. If the DCA functions as intended, the closer this value
is to 1, the greater the probability that the antigen is anomalous. The MCAV
value is used to assess the degree of anomaly of a given antigen. By applying
thresholds at various levels, analysis can be performed to assess the anomaly
detection capabilities of the algorithm.

The DCA has three stages: initialisation, update and aggregation. Initialisa-
tion involves setting various parameters and is followed by the update stage.
The update stage can be decomposed into tissue update and cell cycle. Both the
tissue update and cell cycle form the libtissue tissue server. Signal data is fed
from the data-source to the tissue server through the tissue client.

The tissue update is a continuous process, whereby the values of the tissue
data structures are refreshed. This occurs on an event-driven basis, with values
for signals and antigen updated each time new data appears in the system.
Antigen data enters tissue update in the same, event driven manner. The updated
signals provide the input signals for the population of DCs.

The cell cycle is a discrete process occurring at a user defined rate. In this
paper, 1 cell cycle is performed per second. Signal and antigen from the tissue
data structures are accessed by the DCs during the cell cycle. This includes an
update of every DC in the system with new signal values and antigen. The cell
cycle and update of tissue continues until a stopping criteria is reached, usually
until all antigen data is processed. Finally, the aggregation stage is initiated,
where all collected antigen are subsequently analysed and the MCAV per antigen
derived.

3.3 Parameters and Structures

The algorithm is described using the following terms.

– Indices:
i = 0, ..., I input signal index;
j = 0, ..., J input signal category index;
k = 0, ..., K tissue antigen index;
l = 0, ..., L DC cycle index;
m = 0, ..., M DC index;
n = 0, ..., N DC antigen index;
p = 0, ..., P DC output signal index.

S

a

– Parameters:
I = maximum number of input signals per category;
J = maximum number of categories of input signal;
K = maximum number of antigen in tissue antigen vector;
L = maximum number of DC cycles;
M = maximum number of DCs in population;
N = maximum number of antigen contained per DC ;
P = maximum number of output signals per DC;
Q = number of antigens sampled per DC for one cycle.

– Data Structures:

DCm ={sDC (m), aDC (m), ō(m), t(m)}- a DC within the population;
T = {S, A} - the tissue;
S = tissue signal matrix;
sij = a signal type i, category j in the signal matrix S;
A = tissue antigen vector;
ak = antigen index k in the tissue antigen vector;
sDC =DC signal matrix;
aDC = DC antigen vector;
o = temporary output signal vector for DCm ;
o(m) = output signal p in the output signal vector of DCm ;
ōp = cumulative output signal vector for DCm ;
tm = migration threshold for DCm ;
wijp = transforming weight from sij op .

j=0 Sj=1 Sj=2 S j=3
Signal matrix

Tissue

a 0 a 1 a 2
Antigen vector

K

update

Cell

DC 0 DC 1 DC 2 DCm DC population cycle

S1 S2 S3 S 4

a 0 a 1 a 2 aN

o0 o1 o2

M

DC input signal matrix

DC antigen store

Output signals

DC

m

Fig. 2. Tissue and Cell Update components, where Si,j is reduced to Sj .

ij i3

|Wijp |

ij

ij

i

The data structures are represented graphically in Figure 2. Each DCm trans-
forms each value of sDC (m) to op (m) using the following equation with suggested
values for weightings given in Table 1. Both the equation and weights are derived
from observing experiments performed on natural DCs (personal communication
from Dr J. McLeod and colleagues, UWE, UK), and information presented in
Section 2 (more details found in [4]).

s_ s_
Wijp s

DC

s_
W

i3p

(sDC +1)

i j=3

op (m) = s_ s_ ∗ s_
|Wi3p |

∀ p
i j=3 i

Table 1. Examples of weights used for signal processing

wijp j = 1 j = 2 j = 3 j= 4
p = 1 2 1 2 1
p = 2 0 0 3 1
p = 3 2 1 -3 1

The tissue has containers for signal and antigen values, namely S and A. In
the current implementation of the DCA, there are 4 categories of signal (j = 3)
and 1 signal per category (i = 0). The categories are derived from the 4 signal
model of DC behaviour described in Section 2 where: s0,0 = PAMP signals, s0,1

= danger signals, s0,2 = safe signals and s0,3 = the inflammatory signal. An
antigen store is constructed for use within the tissue cycle where all DCs in the
population collect antigen, which is also introduced to the tissue in an event
driven manner.

The cell cycle maintains all DC data structures. This includes the mainten-
ance of a population of DCs, DCm , which form a sampling set of size M . Each
DC has an input signal matrix, antigen vector, output signals, and migration
threshold. The internal values of DCm are updated, based on current data in
the tissue signal matrix and antigen vector. The DC input signals, sDC , use the
identical mapping for signal categories as tissue sij and are updated every cell
cycle iteration. Each sDC for DCm is updated via an overwrite every cell cycle.
These values are used to calculate output signal values, op , for DCm , which are
added cumulatively over a number of cell cycles to form ōp (m), where p = 0 is
costimulatory value, p = 1 is the mature DC output signal, and p = 2 is the
semi-mature DC output signal.

3.4 The DCA

The following pseudocode shows the initialisation stage, cycle stage, tissue up-
date and cell cycle.

initialise parameters {I , J, K, L, M, N, O, P, Q}

while (l < L)
update A and S

nm

sDC

n

ij

aDC

for m = 0 to M
for 0 to Q

DCm samples Q antigen from A
for all i = 0 to I and all j = 0 to J

ij = sij

for n = 0 to N
DCm processes aDC

l++

for p to P
compute op

ōp (m) = ōp (m) + op

if o0 (m) > tm

DCm removed from population
DCm migrate to Lymph node

analyse antigen and calculate MCAV

3.5 Lymph Node and Antigen Aggregation

Once DCm has been removed from the population, the contents of aDC

and

values ōpm are logged to a file for the aggregation stage. Once completed, sDC ,

n and ōpm are all reset, and DCm is returned to the sampling population. The
re-cycling of DCs continues until the stopping condition is met (l = L). Once
all data has been processed by the DCs, the output log of antigen-plus-context
is analysed. The same antigen is presented multiple time with different context
values. This information is recorded in a log file. The total fraction of mature
DCs presenting said antigen (where ō1 > ō2) is divided by the total amount of
times the antigen was presented namely ō1 /(ō1 + ō2) . This is used to calculate
the mean mature context antigen value or MCAV.

3.6 Signals and Antigen

An integral part of DC function is the ability to combine multiple signals to
influence the behaviour of the cells. The different input signals have different
effects on cell behaviour as described in Section 2. The semantics of the different
category of signal are derived from the study of the influence of the different
signals on DCs in vitro. Definitions of the characteristics of each signal category
are given below, with an example of an actual signal per category. This categor-
isation forms the signal selection schema.

– PAMP - si0 e.g. the number of error messages generated per second by a

failed network connection
1. a signature of abnormal behaviour e.g. an error message
2. a high degree of confidence of abnormality associated with an increase

in this signal strength
– Danger signal - si1 e.g. the number of transmitted network packets per second

1. measure of an attribute which significantly increases in response to ab-
normal behaviour

2. a moderate degree of confidence of abnormality with increased level of
this signal, though at a low signal strength can represent normal beha-
viour.

– Safe signal - si2 E.g. the inverse rate of change of number of network packets
per second. A high rate of change equals a low safe signal level and vice versa.
1. a confident indicator of normal behaviour in a predictable manner or a

measure of steady- behaviour
2. measure of an attribute which increases signal concentration due to the

lack of change in strength
– Inflammatory signal -si3 e.g. high system activity when no user present at a

machine
1. a signal which cannot cause maturation of a DC without the other signals

present
2. a general signal of system distress

Signals, though interesting, are inconsequential without antigen. To a DC,

antigen is an element which is carried and presented to a T-cell, without regard
for the structure of the antigen. Antigen is the data to be classified, and works
well in the form of an identifier, be it an anomalous process ID[5] or the ID
of a data item [4]. At this stage, minimal antigen processing is performed and
the antigen presented is an identical copy of the antigen collected. Detection is
performed through the correlation of antigen with signals.

4 Return of the Nmap - the Port Scan Experiment
Revisited

The purpose of these experiments is as follows:

1. To validate the theoretical model which underpins the DCA
2. To investigate sensitivity to changes in the treatment of signals
3. To apply the DCA to anomaly detection for computer security

4.1 Port Scanning and Data

In this paper, port scanning is used as a model intrusion. While a port scan is
not an intrusion per se, it is a ‘hacker tool’ used frequently during the informa-
tion gathering stage of an intrusion. This can reveal the topology of a network,
open ports and machine operating systems. The behaviour of outgoing port scans
provide a small scale model of an automated attack. While examination of out-
going traffic will not reveal an intruder at the point of entry, it can be used to
detect if a machine is subverted to send anomalous or virally infected packets.
This is particularly relevant for the detection of scanning worms and botnets.
The DCA is applied to the detection of an outgoing port scan to a single port
across a range of IP addresses, based on the ICMP ‘ping’ protocol.

Data is compiled into 30 sessions, namely 10 attack, 10 normal and 10 control
sessions. Each session includes a remote log-in to the monitored machine via SSH,
and contains an event. The attack session includes a port scan performed by
popular port scanning tool nmap, using the -sP option for an ICMP ‘ping’ scan,
across a range of 1020 IP addresses. The normal session includes a transfer of a
file of 2.5MB from the monitored machine to a remote server. The control session
has no event and allows us to observe any signal deviations caused through
monitoring the SSH session.

4.2 Signals and Antigen

Data from the monitored system are collected for the duration of a session. These
values are transformed into signal values and written to a log file. Each signal
value is a normalised real-number, based on a pre-defined maximum value. For
this experiment the signals used are PAMPs, danger and safe signals. Inflam-
matory cytokines (Si4) do not feature as they are not relevant for this particular
problem. PAMPs are represented as the number of “destination unreachable”
errors-per-second recorded on the ethernet card. When the port scan process
scans multiple IP addresses indiscriminately, the number of these errors in-
creases, and therefore is a positive sign of suspicious activity. Danger signals
are represented as the number of outbound network packets per second. An in-
crease in network traffic could imply anomalous behaviour. This alone would not
be useful as legitimate behaviour can cause an increase in network packets. The
safe signals in this experiment are the inverse rate of change of network packets
per second. This is based on the assumption that if the rate of sending network
packets is highly variable, the machine is behaving suspiciously. None of these
signals are enough on their own to indicate an anomaly. In these experiments the
signals are used to detect the port scan, and to not detect the normal file transfer.

During the session each process spawned from the monitored ssh session is

logged through capturing all system calls made by the monitored processes using
strace. Antigen is created with each system call made by a process, with antigen
represented as the process ID value of a system call. Each antigen is processed
subsequently by the DCA, and those presented with context are assigned a
MCAV for assessment.

4.3 The Experiments

Experiments are performed to examine the influence of using different signal
mappings. In these experiments a signal designed to be a PAMP is used as
a danger signal and vice versa. The same is performed with PAMP and safe
signals. We hypothesise based on previous experience using the DCA that it will
be robust to incorrect signal mapping between danger and PAMP signals, but
will lose detection accuracy if a safe signal is switched with a PAMP.

We also examine the effect of multiple antigen sampling on the performance of
the algorithm. The DCA is designed so each DC can present multiple antigen on

migration from the sampling population. Each DC presents a small subset of the
total antigen within the tissue for its lifetime in the cell cycle. If multiple copies
of the same antigen are used, robust coverage of input antigen can be achieved.
To investigate the influence of multiple antigen presentation, an experiment is
performed through limiting the antigen storage capacity (N) of each DC to 1.
If less antigen is presented, the accuracy of the DCA could be impeded. An
additional version of the DCA, known as ‘DCLite’, is implemented as the most
basic form of the algorithm. DCLite uses one context signal, with N = 1, as in
experiment M4. Based on our working knowledge of the data and of the DCA, we
predict that it not possible to perform anomaly detection with the PAMP signal
(S0,1) alone. The performance of the algorithm under the various conditions is
assessed through analysing the MCAV values. Five experiments are performed:

M1 using the suggested ‘hand selected’ input signals
M2 danger and PAMP signal swapped
M3 PAMP and safe signal swapped
M4 using a DC antigen vector size of 1, with signal mapping M1
M5 DC antigen vector of size 1 and using the PAMP signal only (DCLite)

Experiments M1 - M5 are performed for all individual attack and normal

datasets as separate runs. Each data session is analysed by the DCA 3 times
for each experiment (a total of 240 runs). Parameters for the experiments are
as follows: I = 1; J = 4; K = 500; L = 120; M = 100; N = 50; P = 3; Q = 1.
All experiments are performed on a AMD Athlon 1GHz Debian Linux machine
(kernel 2.4.10) with all code implemented in C (gcc 4.0.2).

4.4 Results

The mean MCAV for each process type and each session type, both attack and
normal, are recorded and presented in Table 2. Any process generating a non-zero
MCAV is considered for analysis and termed a process of interest. The MCAV
values for the 4 processes of interest for the attack sessions are represented in
Figure 3. This shows experiment M1-M4 for the two normal processes of the bash
shell (bash) and ssh demon (sshd) and the two anomalous processes namely the
nmap and the pseudo-terminal slave (pts) which displays the nmap output. The
MCAV values for the anomalous processes is significantly higher than that of
the normal processes for experiments M1, M2 and M4. Experiment M3 does not
show the same trend, though interestingly the nmap MCAV is not significantly
different to the values for experiments M1, M2 and M4. All MCAV values for
experiment M5 equal 1 because antigen is never presented in a semi-mature
context due to lack of other signals. The normal session is represented in a
similar manner, also shown in Figure 3. Significantly lower values for MCAV for
all processes are reported, with the exception of experiment M3. The processes of
interest include the bash shell, ssh demon, the file transfer (scp) and a forwarding
client (x-forward). In the control experiment the mean MCAV values for all
presented antigen were zero - no processes of interest could be highlighted. From

Table 2. MCAV values for each experiment across each dataset.

Expt. Attack
nmap pts bash sshd

 mean stdev mean stdev mean stdev mean stdev
M1
M2
M3
M4
M5

0.82
0.86
0.90
0.82
1.00

0.04
0.27
0.04
0.21
0.00

0.67
0.78
0.62
0.55
1.00

0.11
0.12
0.13
0.14
0.00

0.18
0.28
0.99
0.16
1.00

0.22
0.27
0.33
0.26
0.00

0.02
0.19
0.96
0.13
1.00

0.24
0.35
0.02
0.27
0.00

Expt. Normal
scp pts bash sshd

mean stdev mean stdev mean stdev mean stdev
M1
M2
M3
M4

0.14
0.24

1
0.19

0.29
0.33

0
0.25

0.12
0.18

1
0.1

0.25
0.29

0
0.17

0.01
0.04

1
0.01

0.02
0.03

0
0.03

0.01
0.05

1
0.05

0.01
0.09

0
0.08

this we can assume that the process of remote log-in is not enough to change
the behaviour of the machine. All antigens were presented in a safe context
implying steady-state system behaviour reflected through the MCAV output of
the algorithm.

4.5 Analysis

In experiment M1 distinct differences are shown in the behaviour of the algorithm
for the attack and normal datasets. The MCAV for the the anomalous process is
significantly larger than the MCAV of the normal processes. This is encouraging
as it shows that the DCA can differentiate between two different types of pro-
cess based on environmentally derived signals. In experiment M2 the PAMP and
danger signals were switched. In comparison with the results presented for ex-
periment M1, the MCAV for the anomalous process is not significantly different
(paired t-test p < 0.01). However, in experiment M2, the standard deviations
of the mean MCAVs are generally larger and is especially notable for the nmap
process. Potentially, the two signals could be switched (through accidental means
or incorrect signal selection) without altering the performance of the algorithm
significantly. Experiment M3 involved reversing the mapping of safe and PAMP
signals. The safe signal is generated continuously when the system is inactive and
when mapped as a PAMP constantly generated full maturation in the artificial
DCs, shown by the high MCAV value for all processes indiscriminately. Interest-
ingly, in M3 the MCAV value for the anomalous processes in the attack datasets
is lower than the normal process’ value. For the normal dataset, all processes are
classified as anomalous, all resulting in a MCAV of 1, a 100% false positive rate.
These three experiments show that adding some expert knowledge is beneficial
to the performance of the algorithm. It also supports the use of the proposed

M
C

A
V

 p
e
r

p
ro

ce
ss

 I
D

M

C
A

V
 p

e
r

p
ro

ce
ss

 I
D

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Nmap

Pts

Sshd

Bash

0.1

0
M1 M2 M3 M4

Experiment number

1

0.9

0.8

0.7

0.6

0.5

0.4

Bash

Scp

Sshd

X-forward

0.3

0.2

0.1

0

M1 M2 M3 M4

Experiment Number

Fig. 3. The rate of detection for attack (upper graph) and normal (lower graph)
for the 4 processes of interest (MCAV value) for experiments M1-M4 is shown.

signal selection schema for use within the algorithm and has highlighted one key
point - danger and PAMP signals should increase in response to a change in the
system, whereas a PAMP must be the opposite, namely an indicator of little
change within the system.

By comparing the results from experiment M1 and M4, the influence of mul-
tiple antigen sampled per DC can be observed. In M4, the anomalous processes’
MCAV are significantly greater than that of the normal processes. In compar-
ison with M1, the detection of the anomalous processes was not significantly
different for nmap, and was slightly lower for the pts process. Conversely, the
MCAV for all normal processes from both the attack and normal datasets was
greater than in experiment M1. Examination of the number of antigen presented
revealed that fewer antigens per process were presented than in experiment M1.
This implies that the MCAV values were generated from a smaller set size and
could be responsible for the differences in detection. Multiple antigen sampling
can improve the detection of anomalous processes while reducing the amount of
normal processes presented as anomalous. More experiments must be performed
using a range of antigen vector sizes to confirm this result. Experiment M5 yiel-
ded interesting results, showing it is not possible to discriminate between normal
and anomalous (nmap) processes based on the PAMP signal alone. In M5, 3 out
of the 10 datasets yielded no results, with insufficient PAMP signal generated
to cause antigen presentation. For the remaining 7 datasets, all processes of in-
terest produced a MCAV of 1. No discrimination was made between the normal
and anomalous processes. In the absence of being able to discriminate based on

%
 a

cc
u

ra
cy

(

T
P

+
T
N

/

T
o
ta

l
)

the MCAVs, it may still be possible to determine the anomalous process for M5
based on the ratio of presented antigen to antigen input. The ratio for nmap
antigen over the 7 successful runs is 0.054, and 0.02 for the ssh demon. A paired
T-test shows that the sshd antigen ratio was significantly larger than the nmap
ratio, further confirming the poor performance of DC Lite. One possible explan-
ation for the poor performance of the DCA is that the safe signal is vital to
provide some ‘tolerance’ for the processes which run constantly such as the ssh
demon. Further investigations will be performed with the use of safe signals and
the role of active suppression in the performance of the DCA.

100

90

80

70

60 M1
M2

50
M3

40 M4

30

20

10

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold value

Fig. 4. Analysis of attack data for experiment M1-M4 in terms of accuracy at
different thresholds

The accuracy for experiments M1-M4 is calculated by applying increasing
threshold values to the MCAV values for the attack datasets, within a range of 0-
1 at 0.1 intervals. If the MCAV value of a process exceeds this threshold then the
process is classed as anomalous. The number of true positives and true negatives
are calculated. The accuracy is calculated for each experiment (accuracy = true
positives+true negatives / total number of processes) and the results of this
analysis are presented in Figure 4. This figure shows that for experiment M1, if
the threshold is between 0.2 and 0.7 the anomaly detection accuracy is 100%.
For experiment M2 100% accuracy is also achieved, but is in the range of 0.3-0.8.
M4 is of interest, as the range at which 100% accuracy is achieved is reduced
in comparison to M1 and M2. As expected M3 performs significantly poorer
than all others, also shown in Figure 4. For the normal dataset a similar analysis
showed lower rates of false positives for increasing thresholds, with the exception
of M3.

5 Conclusions

In this paper the DCA has been described in detail and interesting facets of the
algorithm have been presented. The importance of careful signal selection has
been highlighted through experiments. The DCA is somewhat robust to misrep-
resentation of the activating danger and PAMP signals, but care must be taken

to select a suitable safe signal as an indicator of normality. In addition, the in-
fluence of multiple antigen presentation by each DC was investigated. Reduced
antigen throughput, a decrease in detection of true positives and an increase in
the rate of false positives are observed. The process by which these signals are
combined has been described, and how changes in the semantic mappings of the
signals influence the algorithm. Data processing was performed by a population
of DCs, and multiplicity in sampling produced improved results. The baseline
experiment highlighted that it is not possible to perform detection using a pre-
defined ‘signature-based’ signal, regardless of how the results are analysed. Not
only have we demonstrated the use of the DCA as an anomaly detector, but have
also uncovered elements of behaviour previously unseen from the application of
this algorithm.

Many aspects of this algorithm remain unexplored such as the sensitivity
of the parameters and scalability in terms of number of cells and number of
input signals. Our future work with this algorithm includes a sensitivity analysis
and the generation of a solid baseline for comparison, in addition to performing
similar signal experiments with a larger, more realistic, real-time problem.

6 Acknowledgements

This project is supported by the EPSRC (GR/S47809/01)

References

1. U Aickelin, P Bentley, S Cayzer, J Kim, and J McLeod. Danger theory: The link

between ais and ids. In ICARIS-03, LNCS 2787, pages 147–155, 2003.
2. U Aickelin, J Greensmith, and J Twycross. Immune system approaches to intrusion

detection - a review. In ICARIS-04, LNCS 3239, pages 316–329, 2004.
3. P Bentley, J Greensmith, and S Ujjin. Two ways to grow tissue for artificial immune

systems. In ICARIS-05, LNCS 3627, pages 139–152, 2005.
4. J Greensmith, U Aickelin, and S Cayzer. Introducing dendritic cells as a novel

immune-inspired algorithm for anomaly detection. In ICARIS-05, LNCS 3627,
pages 153–167, 2005.

5. J. Greensmith, J. Twycross, and U. Aickelin. Artificial dcs for anomaly detection.
In Congress on Evolutionary Computation, page TBA, 2006.

6. S Hofmeyr. An immunological model of distributed detection and its application to
computer security. PhD thesis, University Of New Mexico, 1999.

7. J. Kim, W. Wilson, U. Aickelin, and J. McLeod. Cooperative automated worm
response and detection immune algorithm (cardinal) inspired by t-cell immunity
and tolerance. In ICARIS-04, LNCS 3239, 2005.

8. P Matzinger. Tolerance, danger and the extended family. Annual Reviews in
Immunology, 12:991–1045, 1994.

9. T R Mosmann and AM Livingstone. Dendritic cells: the immune information
management experts. Nature Immunology, 5(6):564–566, 2004.

10. J. Twycross and U. Aickelin. Towards a conceptual framework for innate immunity.
In ICARIS-05, LNCS 3627, 2005.

11. J. Twycross and U. Aickelin. libtissue - implementing innate immunity. In Congress
on Evolutionary Computation (CEC-2006), page TBA, 2006.

