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Abstract. The  Dendritic Cell  algorithm (DCA) is inspired  by  recent 
work in innate immunity. In this paper  a formal  description of the DCA 
is  given.  The  DCA  is  described in  detail, and  its  use  as  an  anomaly 
detector is illustrated within  the context  of computer security. A port 
scan  detection task is performed to  substantiate the  influence  of signal 
selection  on the behaviour of the algorithm. Experimental results  provide 
a comparison of differing  input signal  mappings. 
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1  Introduction 

 
Artificial  immune  systems (AIS)  are a collection  of algorithms developed  from 
models or abstractions of the function  of the cells of the human  immune system. 
The first, and arguably  the most obvious, application for AIS is in the protection 
of computers   and  networks,  through virus  and  intrusion   detection[2].  In  this 
paper  we present an AIS approach to intrusion  detection  based  on the  Danger 
Theory,  through  the  development of an  algorithm  based  on  the  behaviour  of 
Dendritic Cells (DCs).  DCs have the power to suppress  or activate the immune 
system through  the  correlation  of signals from an environment, combined  with 
location markers in the form of antigen.  A DCs function is to instruct the immune 
system to act when the  body  is under  attack, policing the tissue for potential 
sources of damage.  DCs are natural anomaly  detectors, the sentinel  cells of the 
immune  system,  and  therefore  the  development  of a DC based  algorithm  was 
only a matter of time.  The  Dendritic  Cell Algorithm  (DCA)  was introduced in 
2005 and has demonstrated potential as a classifier for a static machine learning 
data  set[4] and anomaly  detector for real-time port scan detection[5].  The DCA 
differs from other  AIS algorithm for the following reasons: 

–  multiple  signals  are  combined  and  are  a representation of environment  or 
context  information 

–  signals are combined  with antigen  in a temporal and distributed manner 
–  pattern  matching is not  used  to perform  detection, unlike  negative  selec- 

tion[6] 
–  cells of the innate  immune  system  are used as inspiration, not the adaptive 

immune  cells and unlike clonal selection, no dynamic  learning  is attempted 
 

The  aim of this  paper  is to demonstrate the  anomaly  detection  capabilities of 
the DCA and to clarify which features  of the algorithm  facilitate  detection. 



 
 
 
 

2  Dendritic Cells in vivo 
 
 

The DCA is based on the function of dendritic  cells whose primary  role is as an 
antigen  presenting cell. DCs behave  very differently  to the  cells of the adaptive 
immune system. Before describing the function of the algorithm we give a general 
overview of DC biology, introducing different cells, organs  and their  behaviour. 
More information on natural DCs can be found in [9]. 

In vivo, DCs can perform a number of different functions, determined by their 
state  of maturation. Modulation between  these  states  is facilitated by the  de- 
tection  of signals within the tissue - namely danger signals, PAMPs  (pathogenic 
associated  molecular patterns), apoptotic signals (safe signals) and inflammatory 
cytokines  which are described  below. The  maturation state  of a DC is determ- 
ined  by  the  relative  concentrations of these  four  types of signal.  The  state  of 
maturity of a DC influences the  response  by T-cells, to either  an immunogenic 
or tolerogenic  state,  for a specific antigen.  Immature DCs  reside  in the  tissue 
where they  collect antigenic  material  and  are exposed to signals. Based  on the 
combinations of signals received, maturation of the  DCs occurs generating  two 
terminal   differentiation states,   mature or  semi-mature. Mature   DCs  have  an 
activating effect while semi-mature DCs have a suppressive  effect. The different 
output signals (termed output cytokines) generated by the two terminal states  of 
DCs differ sufficiently to provide two different contexts  for antigen  presentation, 
shown abstractly in Figure  1. 
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Fig. 1.  An abstract view of DC maturation and  signals required  for differenti- 
ation.  CKs denote  cytokines. 

 

 
 

The characteristics of the relevant signals are summarised below: 



 
 
 
 

–  PAMPS  are pre-defined  bacterial signatures, causing the maturation of im- 
mature DCs to mature DCs through  expression  of ‘mature cytokines’. 

–  Danger signals are released as a result of damage to tissue cells, also increas- 
ing mature DC cytokines,  and have a lower potency  than  PAMPs. 

–  Safe signals  are  released  as  a  result  of regulated cell death  and  cause  an 
increase in semi-mature DC cytokines,  and reduce the output of mature DC 
cytokines 

–  Inflammatory cytokines  are derived from general tissue distress and amplify 
the effects of the other three signals but are not sufficient to cause any effect 
on immature DCs when used in isolation. 

 
 

3  Dendritic Cells in silico 
 

The Dendritic  Cell Algorithm  (DCA)  was developed as part  of the Danger  Pro- 
ject[1], which aims to find the missing link between AIS and Intrusion Detection 
through  the  application of the  danger  theory[8].  The  danger  theory  proposes 
that the  immune  system  responds  when damage  to the  host is detected, rather 
than  discriminating between self and non-self proteins.  The project encompasses 
artificial tissue[3] and T-cells[7], and the libtissue framework[11]. The DCs are 
the detection component developed within  this project. 

3.1  Libtissue 

Libtissue is a software system which allows the implementation and testing  of 

AIS algorithms  on real-world  problems  based  on principles  of innate  immuno- 
logy [10], [11]. It allows researchers  to implement AIS algorithms as a collection 
of cells, antigen  and  signals interacting within  a tissue  compartment. The  im- 
plementation has  a client/server architecture, separating data  collection  from 
data  processing.  Input data  to the  tissue compartment is generated by sensors 
monitoring environmental, behavioural or context  data  through the libtissue 
client,  transforming this  data  into  antigen  and  signals.  AIS algorithms can be 
implemented within  the libtissue server, as libtissue provides  a convenient 
programming environment. Both  client and  server APIs  allow new antigen  and 
signal  sources  to  be added  to  libtissue servers,  and  the  testing  of the  same 
algorithm with  a number  of different data  sources.  Input  data  from the tissue 
client  is represented  in  a  tissue  compartment  contained on  the  tissue  server. 
A tissue  compartment  is a space  in which  cells, signals  and  antigen  interact. 
Each  tissue  compartment has a fixed-size antigen  store  where antigen  provided 
by  libtissue clients  is placed.  The  tissue  compartment  also  stores  levels of 
signals, set either  by tissue clients or cells. 

 
 

3.2  Abstract  View of the DCA 
 

The DCA is implemented as a libtissue tissue server. Input  signals are combined 
with  a  second  source  of data,   such  as  a  data  item  ID,  or  program  ID  num- 
ber.  This  is achieved  through  using  a population of artificial  DCs  to perform 



 
 
 
 

aggregate  sampling  and  data  processing.  Using multiple  DCs means  that mul- 
tiple data  items  in the  form of antigen  are  sampled  multiple  times.  If a single 
DC  presents  incorrect  information, it  becomes  inconsequential  provided  that 
the  majority  of DCs derive  the  correct context. The  sampling  of data  is com- 
bined  with  context  information received  during  the  antigen  collection  process. 
Different combinations of input  signals result in two different antigen  contexts. 
Semi-mature antigen  context  implies antigen data  was collected  under  normal 
conditions,  whereas  a mature antigen  context signifies a potentially anomalous 
data  item.  The  nature of the  response  is determined  by  measuring  the num- 
ber of DCs that are fully mature, represented by a value, MCAV - the mature 
context  antigen  value. If the DCA  functions  as intended, the  closer this  value 
is to 1, the  greater  the probability that the  antigen  is anomalous.  The  MCAV 
value  is used  to  assess the  degree of anomaly  of a given antigen.  By applying 
thresholds at  various  levels, analysis  can  be performed  to  assess the anomaly 
detection capabilities  of the algorithm. 

The DCA has three  stages: initialisation, update  and aggregation.  Initialisa- 
tion  involves  setting  various  parameters and  is followed by  the update stage. 
The update stage can be decomposed into tissue update and cell cycle. Both the 
tissue update and cell cycle form the libtissue tissue server. Signal data  is fed 
from the data-source to the tissue server through the tissue client. 

The  tissue  update is a continuous  process, whereby  the  values of the  tissue 
data  structures are refreshed.  This occurs on an event-driven basis, with values 
for  signals  and  antigen  updated each  time  new  data  appears  in  the  system. 
Antigen data enters tissue update in the same, event driven manner.  The updated 
signals provide  the input  signals for the population of DCs. 

The  cell cycle is a discrete  process occurring  at  a user defined rate.  In this 
paper,  1 cell cycle is performed  per second. Signal and  antigen from the  tissue 
data  structures are accessed by the  DCs during  the  cell cycle. This  includes an 
update of every DC in the  system with new signal values and  antigen.  The  cell 
cycle and update of tissue continues  until  a stopping  criteria  is reached,  usually 
until  all antigen  data  is processed.  Finally,  the  aggregation  stage  is initiated, 
where all collected antigen are subsequently analysed and the MCAV per antigen 
derived. 

 
3.3  Parameters and Structures 

 

The algorithm is described  using the following terms. 

–  Indices: 
i = 0, ..., I input signal index; 
j = 0, ..., J input signal category  index; 
k = 0, ..., K  tissue antigen index; 
l = 0, ..., L DC cycle index; 
m = 0, ..., M  DC index; 
n = 0, ..., N  DC antigen  index; 
p = 0, ..., P  DC output signal index. 
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–  Parameters: 
I = maximum  number  of input signals per category; 
J = maximum  number  of categories  of input signal; 
K  = maximum  number  of antigen  in tissue antigen  vector; 
L = maximum  number  of DC cycles; 
M  = maximum  number  of DCs in population; 
N  = maximum  number  of antigen  contained per DC ; 
P  = maximum  number  of output signals per DC; 
Q = number  of antigens  sampled  per DC for one cycle. 

 

 
–  Data  Structures: 

DCm ={sDC (m), aDC (m), ō(m), t(m)}- a DC within  the population; 
T = {S, A} - the tissue; 
S = tissue signal matrix; 
sij = a signal type i, category  j in the signal matrix  S; 
A = tissue antigen vector; 
ak   = antigen  index k in the tissue antigen  vector; 
sDC =DC  signal matrix; 
aDC = DC antigen  vector; 
o = temporary output signal vector  for DCm ; 
o(m)  = output signal p in the output signal vector  of DCm ; 
ōp  = cumulative output signal vector for DCm ; 
tm  = migration threshold  for DCm ; 
wijp  = transforming weight from sij op . 
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Fig. 2. Tissue and Cell Update  components, where Si,j is reduced  to Sj . 
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The data  structures are represented graphically  in Figure 2. Each DCm trans- 
forms each value of sDC (m) to op (m) using the following equation  with suggested 
values for weightings given in Table 1. Both the equation  and weights are derived 
from observing experiments performed on natural DCs (personal communication 
from Dr J.  McLeod and  colleagues,  UWE,  UK),  and  information presented in 
Section 2 (more details  found in [4]). 
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Table 1. Examples  of weights used for signal processing 
 

wijp j = 1 j = 2 j = 3 j= 4
p = 1 2 1 2 1
p = 2 0 0 3 1
p = 3 2 1 -3 1

The tissue has containers for signal and antigen  values, namely  S and A. In 
the current implementation of the DCA, there  are 4 categories  of signal (j = 3) 
and  1 signal per category  (i = 0). The  categories  are derived  from the  4 signal 
model of DC behaviour  described  in Section 2 where: s0,0 = PAMP  signals, s0,1 

= danger  signals,  s0,2 = safe signals  and  s0,3 = the  inflammatory signal.  An 
antigen  store is constructed for use within  the tissue cycle where all DCs in the 
population collect  antigen,  which  is also introduced to  the  tissue  in an  event 
driven  manner. 

The  cell cycle maintains all DC data  structures. This  includes  the  mainten- 
ance of a population of DCs, DCm , which form a sampling  set of size M . Each 
DC has  an  input signal  matrix, antigen  vector,  output signals,  and  migration 
threshold. The  internal values  of DCm  are  updated, based  on current  data  in 
the tissue signal matrix  and antigen  vector.  The DC input  signals, sDC , use the 
identical  mapping  for signal categories  as tissue  sij and  are updated every cell 
cycle iteration. Each sDC for DCm is updated via an overwrite  every cell cycle. 
These values are used to calculate  output signal values, op , for DCm , which are 
added  cumulatively over a number  of cell cycles to form ōp (m),  where p = 0 is 
costimulatory value,  p = 1 is the mature DC output signal,  and  p = 2 is the 
semi-mature DC output signal. 

 
 

3.4  The DCA 
 

The  following pseudocode  shows the  initialisation stage,  cycle stage,  tissue  up- 
date  and cell cycle. 

initialise parameters {I , J, K, L, M, N, O, P, Q} 

while (l < L) 
update A  and S 
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for m = 0  to M 
for 0  to Q 

DCm  samples Q  antigen from A 
for all i = 0  to I and all j = 0  to J 

ij    = sij 

for n = 0  to N 
DCm  processes aDC

 

 
 
 
 
 
 

l++ 

for p  to P 
compute op 

ōp (m)  = ōp (m) + op 

if o0 (m)  > tm 

DCm  removed from population 
DCm  migrate to Lymph node 

 
analyse antigen and calculate MCAV 

 
 
 

3.5  Lymph Node and Antigen Aggregation 
 

Once  DCm  has  been  removed  from  the  population, the  contents  of aDC 

 
 
and 

values ōpm   are logged to a file for the  aggregation  stage.  Once completed,  sDC , 

n and ōpm  are all reset, and DCm is returned to the sampling population. The 
re-cycling  of DCs continues  until  the  stopping  condition  is met  (l = L).  Once 
all data  has been processed by the DCs, the  output log of antigen-plus-context 
is analysed.  The same antigen  is presented multiple  time  with different context 
values.  This  information is recorded  in a log file. The  total  fraction  of mature 
DCs presenting said antigen (where  ō1  > ō2 ) is divided  by the  total  amount of 
times the antigen was presented namely  ō1 /(ō1  + ō2 ) . This is used to calculate 
the mean  mature  context  antigen  value or MCAV. 

 
 

3.6  Signals and Antigen 
 

An  integral  part of DC  function  is the  ability to  combine  multiple  signals  to 
influence the  behaviour  of the  cells. The  different input  signals  have  different 
effects on cell behaviour  as described in Section 2. The semantics  of the different 
category  of signal  are  derived  from the  study  of the  influence of the  different 
signals on DCs in vitro. Definitions of the characteristics of each signal category 
are given below, with an example of an actual  signal per category.  This categor- 
isation  forms the signal selection schema. 

 
–  PAMP  - si0  e.g.  the  number  of error  messages  generated  per  second  by a 

failed network connection 
1.  a signature of abnormal behaviour  e.g. an error message 
2.  a high degree of confidence of abnormality associated  with  an increase 

in this signal strength 
–  Danger signal - si1 e.g. the number of transmitted network packets per second 



 
 
 
 

1.  measure  of an attribute which significantly  increases  in response to ab- 
normal  behaviour 

2.  a moderate degree of confidence of abnormality  with  increased  level of 
this  signal, though  at  a low signal strength can represent normal  beha- 
viour. 

–  Safe signal - si2 E.g. the inverse rate  of change of number of network packets 
per second. A high rate of change equals a low safe signal level and vice versa. 
1.  a confident indicator of normal  behaviour  in a predictable manner  or a 

measure  of steady-  behaviour 
2.  measure  of an attribute which increases signal concentration due to the 

lack of change in strength 
–  Inflammatory signal -si3 e.g. high system activity  when no user present  at a 

machine 
1.  a signal which cannot cause maturation of a DC without  the other signals 

present 
2.  a general signal of system  distress 

 
Signals,  though  interesting, are  inconsequential without  antigen.  To  a DC, 

antigen  is an element which is carried  and presented to a T-cell, without  regard 
for the structure of the  antigen.  Antigen  is the data  to be classified, and works 
well in the  form  of an  identifier,  be it  an  anomalous  process  ID[5] or the ID 
of a data  item  [4]. At this  stage,  minimal  antigen  processing  is performed  and 
the  antigen  presented is an identical  copy of the  antigen  collected.  Detection  is 
performed  through the correlation  of antigen  with signals. 

 
 

4  Return of the Nmap - the Port Scan Experiment 
Revisited 

 
The purpose  of these experiments is as follows: 

 

1.  To validate  the theoretical model which underpins  the DCA 
2.  To investigate sensitivity to changes in the treatment of signals 
3.  To apply  the DCA to anomaly  detection  for computer security 

 
 

4.1  Port Scanning and Data 
 

In this  paper,  port scanning  is used as a model intrusion. While a port scan is 
not an intrusion  per se, it is a ‘hacker tool’ used frequently  during  the informa- 
tion gathering stage  of an intrusion. This can reveal the topology  of a network, 
open ports and machine operating  systems. The behaviour  of outgoing port scans 
provide  a small scale model of an automated attack. While examination of out- 
going traffic will not  reveal an intruder at the  point of entry, it can be used to 
detect if a machine  is subverted to send anomalous  or virally  infected  packets. 
This  is particularly relevant  for the  detection of scanning  worms and  botnets. 
The  DCA is applied  to the  detection  of an outgoing  port  scan to a single port 
across a range of IP addresses,  based on the ICMP  ‘ping’ protocol. 



 
 
 
 

Data  is compiled into 30 sessions, namely 10 attack, 10 normal and 10 control 
sessions. Each session includes a remote log-in to the monitored  machine via SSH, 
and  contains  an  event.  The  attack session includes  a port  scan  performed  by 
popular  port  scanning  tool nmap, using the -sP option  for an ICMP  ‘ping’ scan, 
across a range of 1020 IP addresses.  The normal  session includes a transfer of a 
file of 2.5MB from the monitored machine to a remote server. The control session 
has  no  event and  allows  us  to  observe  any  signal  deviations  caused  through 
monitoring the SSH session. 

 

 
4.2  Signals and Antigen 

 

Data from the monitored  system are collected for the duration of a session. These 
values are transformed into  signal values and  written to a log file. Each  signal 
value is a normalised  real-number, based  on a pre-defined  maximum  value. For 
this  experiment the  signals  used  are  PAMPs,  danger  and  safe signals.  Inflam- 
matory  cytokines (Si4 ) do not feature  as they are not relevant for this particular 
problem.  PAMPs  are  represented as the  number  of “destination unreachable” 
errors-per-second recorded  on the  ethernet card.  When  the  port scan  process 
scans  multiple   IP  addresses  indiscriminately,  the  number   of these  errors  in- 
creases,  and  therefore  is a  positive  sign of suspicious  activity.  Danger  signals 
are represented as the number  of outbound network  packets  per second. An in- 
crease in network traffic could imply anomalous  behaviour.  This alone would not 
be useful as legitimate behaviour  can cause an increase in network packets. The 
safe signals in this experiment are the inverse rate  of change of network packets 
per second. This is based on the assumption that if the rate  of sending network 
packets is highly  variable,  the  machine  is behaving  suspiciously.  None of these 
signals are enough on their own to indicate  an anomaly. In these experiments the 
signals are used to detect the port scan, and to not detect the normal file transfer. 

 

During  the session each process spawned  from the  monitored  ssh session is 

logged through capturing all system calls made by the monitored processes using 
strace. Antigen is created  with each system call made by a process, with antigen 
represented as the  process ID value of a system  call. Each  antigen  is processed 
subsequently  by  the  DCA,  and  those  presented with  context   are  assigned  a 
MCAV for assessment. 

 

 
4.3  The Experiments 

 

Experiments are  performed  to  examine  the  influence  of using  different signal 
mappings.   In  these  experiments a  signal  designed  to  be  a  PAMP   is used  as 
a danger  signal  and  vice versa.  The  same  is performed  with  PAMP  and  safe 
signals. We hypothesise  based on previous experience using the DCA that it will 
be robust  to incorrect  signal mapping  between  danger  and  PAMP  signals,  but 
will lose detection  accuracy  if a safe signal is switched  with a PAMP. 

We also examine the effect of multiple antigen sampling on the performance  of 
the algorithm. The DCA is designed so each DC can present multiple  antigen on 



 
 
 
 

migration from the sampling population. Each DC presents  a small subset of the 
total  antigen  within  the tissue for its lifetime in the cell cycle. If multiple  copies 
of the same antigen  are used, robust coverage of input antigen  can be achieved. 
To investigate the  influence of multiple  antigen  presentation, an experiment is 
performed  through limiting  the  antigen  storage  capacity  (N ) of each DC to 1. 
If less antigen  is presented, the accuracy  of the  DCA  could  be  impeded.  An 
additional version of the DCA, known as ‘DCLite’, is implemented as the most 
basic form of the  algorithm. DCLite  uses one context  signal, with N = 1, as in 
experiment M4. Based on our working knowledge of the data  and of the DCA, we 
predict  that it not possible to perform anomaly detection  with the PAMP  signal 
(S0,1 ) alone. The  performance  of the  algorithm  under  the  various  conditions  is 
assessed through analysing  the MCAV values. Five experiments are performed: 

 
M1   using the suggested ‘hand selected’ input signals 
M2   danger  and PAMP  signal swapped 
M3   PAMP  and safe signal swapped 
M4   using a DC antigen  vector  size of 1, with signal mapping  M1 
M5   DC antigen  vector  of size 1 and using the PAMP  signal only (DCLite) 

 
Experiments M1 - M5 are  performed  for all individual  attack and  normal 

datasets as separate runs.  Each  data  session is analysed  by the DCA  3 times 
for each  experiment  (a  total  of 240 runs).  Parameters for the  experiments are 
as follows: I = 1; J = 4; K  = 500; L = 120; M  = 100; N  = 50; P  = 3; Q = 1. 
All experiments are performed  on a AMD Athlon  1GHz Debian  Linux machine 
(kernel  2.4.10) with all code implemented in C (gcc 4.0.2). 

 
 

4.4  Results 
 

The mean MCAV for each process type and each session type, both  attack and 
normal, are recorded and presented in Table 2. Any process generating  a non-zero 
MCAV is considered  for analysis  and  termed  a process  of interest. The  MCAV 
values  for the 4 processes of interest for the  attack sessions are represented in 
Figure 3. This shows experiment M1-M4 for the two normal processes of the bash 
shell (bash) and ssh demon (sshd) and the two anomalous  processes namely the 
nmap and the pseudo-terminal slave (pts) which displays the nmap  output. The 
MCAV  values  for the  anomalous  processes  is significantly  higher  than  that of 
the normal processes for experiments M1, M2 and M4. Experiment M3 does not 
show the same trend, though  interestingly the nmap  MCAV is not significantly 
different to the  values  for experiments M1, M2 and  M4. All MCAV  values  for 
experiment M5 equal  1 because  antigen  is never  presented in  a  semi-mature 
context   due  to  lack  of other  signals.  The  normal  session  is represented in  a 
similar manner,  also shown in Figure 3. Significantly  lower values for MCAV for 
all processes are reported, with the exception of experiment M3. The processes of 
interest include the bash shell, ssh demon, the file transfer (scp) and a forwarding 
client  (x-forward). In  the  control  experiment  the  mean  MCAV  values  for all 
presented antigen  were zero - no processes of interest could be highlighted. From 



 
 
 
 

Table 2. MCAV values for each experiment across each dataset. 
 

Expt. Attack
nmap pts bash sshd

 mean stdev mean stdev mean stdev mean stdev
M1 
M2 
M3 
M4 
M5 

0.82 
0.86 
0.90 
0.82 
1.00 

0.04
0.27
0.04
0.21
0.00

0.67
0.78
0.62
0.55
1.00

0.11
0.12
0.13
0.14
0.00

0.18
0.28
0.99
0.16
1.00

0.22
0.27
0.33
0.26
0.00

0.02
0.19
0.96
0.13
1.00

0.24
0.35
0.02
0.27
0.00

Expt. Normal
scp pts bash sshd

mean stdev mean stdev mean stdev mean stdev
M1 
M2 
M3 
M4 

0.14 
0.24 

1 
0.19 

0.29
0.33

0 
0.25

0.12
0.18

1 
0.1

0.25
0.29

0 
0.17

0.01
0.04

1 
0.01

0.02
0.03

0 
0.03

0.01
0.05

1 
0.05

0.01
0.09

0 
0.08

 
 
 

this  we can assume  that the  process of remote  log-in is not  enough  to  change 
the  behaviour   of the  machine.  All antigens  were  presented in  a  safe context 
implying  steady-state system  behaviour  reflected through  the MCAV output of 
the algorithm. 

 
 

4.5  Analysis 
 

In experiment M1 distinct differences are shown in the behaviour  of the algorithm 
for the attack and normal datasets. The MCAV for the the anomalous  process is 
significantly larger than the MCAV of the normal processes. This is encouraging 
as it shows that the DCA can differentiate between  two different types of pro- 
cess based on environmentally derived signals. In experiment M2 the PAMP  and 
danger  signals were switched.  In comparison  with  the  results  presented for ex- 
periment M1, the MCAV for the anomalous  process is not significantly  different 
(paired  t-test p < 0.01). However,  in experiment  M2, the  standard deviations 
of the mean MCAVs are generally larger and is especially notable  for the nmap 
process. Potentially, the two signals could be switched (through accidental means 
or incorrect signal selection)  without  altering  the  performance  of the  algorithm 
significantly.  Experiment M3 involved reversing the mapping  of safe and PAMP 
signals. The safe signal is generated continuously when the system is inactive and 
when mapped  as a PAMP  constantly generated full maturation in the artificial 
DCs, shown by the high MCAV value for all processes indiscriminately. Interest- 
ingly, in M3 the MCAV value for the anomalous  processes in the attack datasets 
is lower than  the normal process’ value. For the normal dataset, all processes are 
classified as anomalous,  all resulting  in a MCAV of 1, a 100% false positive rate. 
These  three  experiments show that adding  some expert  knowledge is beneficial 
to  the  performance  of the  algorithm. It  also supports the  use of the  proposed 
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Fig. 3. The rate  of detection  for attack (upper  graph)  and normal (lower graph) 
for the 4 processes of interest (MCAV value)  for experiments M1-M4 is shown. 

 
 

signal selection schema for use within the algorithm and has highlighted  one key 
point - danger  and PAMP  signals should increase in response to a change in the 
system, whereas  a PAMP  must  be the  opposite,  namely  an  indicator of little 
change within  the system. 

By comparing  the results  from experiment M1 and M4, the influence of mul- 
tiple antigen sampled  per DC can be observed.  In M4, the anomalous  processes’ 
MCAV are significantly  greater  than  that of the  normal  processes.  In compar- 
ison with  M1, the  detection  of the  anomalous  processes  was not  significantly 
different for nmap, and  was slightly  lower for the  pts process.  Conversely,  the 
MCAV for all normal  processes from both  the  attack and  normal  datasets was 
greater  than  in experiment M1. Examination of the number  of antigen presented 
revealed that fewer antigens  per process were presented than  in experiment M1. 
This  implies that the  MCAV values were generated from a smaller  set size and 
could be responsible  for the  differences in detection. Multiple  antigen  sampling 
can improve the detection of anomalous  processes while reducing  the amount of 
normal processes presented as anomalous.  More experiments must be performed 
using a range of antigen  vector sizes to confirm this result.  Experiment M5 yiel- 
ded interesting results, showing it is not possible to discriminate between normal 
and anomalous  (nmap) processes based on the PAMP  signal alone. In M5, 3 out 
of the 10 datasets yielded  no results,  with  insufficient  PAMP  signal generated 
to cause antigen presentation. For the remaining  7 datasets, all processes of in- 
terest produced  a MCAV of 1. No discrimination was made between the normal 
and anomalous  processes. In the absence of being able to discriminate based on 
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the MCAVs, it may still be possible to determine the anomalous  process for M5 
based  on the  ratio  of presented antigen  to antigen  input.  The  ratio  for nmap 
antigen  over the 7 successful runs is 0.054, and 0.02 for the ssh demon. A paired 
T-test shows that the sshd antigen  ratio  was significantly larger than  the nmap 
ratio,  further  confirming the poor performance  of DC Lite. One possible explan- 
ation  for the  poor  performance  of the  DCA  is that the  safe signal  is vital  to 
provide  some ‘tolerance’ for the processes which run constantly such as the  ssh 
demon. Further investigations will be performed  with the use of safe signals and 
the role of active suppression  in the performance  of the DCA. 
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Fig. 4.  Analysis  of attack data  for experiment  M1-M4 in terms  of accuracy  at 
different thresholds 

 

The  accuracy  for experiments M1-M4 is calculated  by applying  increasing 
threshold values to the MCAV values for the attack datasets, within a range of 0- 
1 at 0.1 intervals. If the MCAV value of a process exceeds this threshold then the 
process is classed as anomalous.  The number  of true positives and true negatives 
are calculated. The accuracy  is calculated for each experiment (accuracy  = true 
positives+true negatives  / total  number  of processes)  and  the  results  of this 
analysis  are presented in Figure  4. This figure shows that for experiment M1, if 
the  threshold is between  0.2 and  0.7 the  anomaly  detection  accuracy  is 100%. 
For experiment M2 100% accuracy is also achieved, but is in the range of 0.3-0.8. 
M4 is of interest, as the  range  at  which 100% accuracy  is achieved  is reduced 
in  comparison  to  M1 and  M2. As expected  M3 performs  significantly  poorer 
than  all others,  also shown in Figure 4. For the normal dataset a similar analysis 
showed lower rates of false positives for increasing thresholds, with the exception 
of M3. 

 
 

5  Conclusions 
 

 
In this paper  the DCA has been described  in detail  and interesting facets of the 
algorithm have  been presented. The  importance of careful  signal  selection  has 
been highlighted  through experiments. The DCA is somewhat  robust  to misrep- 
resentation of the activating danger  and PAMP  signals, but  care must be taken 



 
 
 
 

to select a suitable  safe signal as an indicator of normality. In addition, the  in- 
fluence of multiple  antigen  presentation by each DC was investigated. Reduced 
antigen  throughput, a decrease in detection of true positives  and an increase in 
the  rate  of false positives  are observed.  The  process by which these  signals are 
combined has been described,  and how changes in the semantic  mappings  of the 
signals influence the algorithm. Data  processing was performed  by a population 
of DCs,  and  multiplicity in sampling  produced  improved  results.  The  baseline 
experiment highlighted that it is not possible to perform  detection using a pre- 
defined ‘signature-based’ signal, regardless  of how the results  are analysed.  Not 
only have we demonstrated the use of the DCA as an anomaly detector, but have 
also uncovered  elements  of behaviour  previously  unseen from the application of 
this algorithm. 

Many  aspects  of this  algorithm remain  unexplored  such  as  the  sensitivity 
of the  parameters and  scalability  in  terms  of number  of cells and  number  of 
input signals. Our future  work with this algorithm includes a sensitivity analysis 
and the generation  of a solid baseline for comparison,  in addition  to performing 
similar signal experiments with a larger,  more realistic, real-time  problem. 
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