Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4155))

  • 607 Accesses

Abstract

Sometimes it is pragmatically useful to prove a theorem by contradiction rather than finding a direct proof. Some reductio ad absurdum arguments have made mathematical history and the general issue if and how a proof by contradiction can be replaced by a direct proof touches upon deep foundational issues such as the legitimacy of tertium non datur arguments in classical vs. intuitionistic foundations.

In this paper we are interested in the pragmatic issue when and how to use this proof strategy in everyday mathematics in general and in particular in automated proof planning. Proof planning is a general technique in automated theorem proving that captures and makes explicit proof patterns and mathematical search control. So, how can we proof plan an argument by reductio ad absurdum and when is it useful to do so? What are the methods and decision involved?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartle, R.G., Sherbert, D.R.: Introduction to Real Analysis. John Wiley & Sons, New York (1982)

    MATH  Google Scholar 

  2. Beeson, M.J.: Automatic generation of epsilon-delta proofs of continuity. In: Calmet, J., Plaza, J. (eds.) AISC 1998. LNCS (LNAI), vol. 1476, pp. 67–83. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Beeson, M.J.: Automatic generation of a proof of the irrationality of e. Journal of Symbolic Computation 32(4), 333–349 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bledsoe, W.W.: Non-resolution theorem proving. Artificial Intelligence 9, 1–35 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  6. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56–68 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dummett, M.: Elements of Intuitionism, 2nd edn., Oxford (2000)

    Google Scholar 

  8. Gelernter, H.: Realization of a geometry theorem-proving machine. In: Proceedings of the International Conference on Information Processing, UNESCO (1959)

    Google Scholar 

  9. Lenat, D.B.: AM: an AI approach to discovery in mathematics. In: Davis, R., Lenat, D.B. (eds.) Knowledge-Based Systems in Artificial Intelligence. Mc-Graw Hill, New York (1981)

    Google Scholar 

  10. Melis, E.: AI-techniques in proof planning. In: European Conference on Artificial Intelligence, pp. 494–498. Kluwer, Brighton (1998)

    Google Scholar 

  11. Melis, E.: The “limit” domain. In: Simmons, R., Veloso, M., Smith, S. (eds.) Proceedings of the Fourth International Conference on Artificial Intelligence in Planning Systems, pp. 199–206 (1998)

    Google Scholar 

  12. Melis, E.: Automated Epsilon-Delta Proofs - A Research Story. Journal of Symbolic Computation (to be submitted, 2006)

    Google Scholar 

  13. Melis, E., Meier, A.: Proof planning with multiple strategies. In: Loyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K., Palamidessi, C., Pereira, L.M., Sagivand, Y., Stuckey, P. (eds.) CL 2000. Lecture Notes on Artificial Intelligence, vol. 1861, pp. 644–659. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Melis, E., Siekmann, J.H.: Knowledge-based proof planning. Artificial Intelligence 115(1), 65–105 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Melis, E., Meier, A., Siekmann, J.: Proof planning with multiple strategies. Artificial Intelligence (submitted, 2006)

    Google Scholar 

  16. Meier, A., Melis, E.: Proof Planning Limit Problems with Multiple Strategies. SEKI Technical Report SR-2004-04, FR Informatik, Universitaet des Saarlandes (2004)

    Google Scholar 

  17. Polya, G.: How to Solve it. Princeton University Press, Princeton (1945)

    MATH  Google Scholar 

  18. Robinson, J.A.: A machine-oriented logic based on the resolution principle. JACM 12 (1965)

    Google Scholar 

  19. Robinson, A., Voronkov, A.: Handbook of Automated Reasoning, vol. 1. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

  20. Schoenfeld, A.H.: Mathematical Problem Solving. Academic Press, New York (1985)

    MATH  Google Scholar 

  21. Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic). Studia Logica 60, 67–106 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Siekmann, J., Benzmüller, C., Autexier, S.: Computer supported mathematics with Omega. Journal of Applied Logic (in press, 2006)

    Google Scholar 

  23. Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M.: Proof Development in OMEGA: The Irrationality of Square Root of 2. In: Kamareddine, F. (ed.) Thirty Five Years of Automating Mathematics. Kluwer Applied Logic series. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  24. Wiedijk, F. (ed.): The Seventeen Provers of the World (the first volume in the AI-Systems subseries). LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)

    Google Scholar 

  25. Zimmer, J., Melis, E.: Constraint solving for proof planning. Journal of Automated Reasoning 33(1), 51–88 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melis, E., Pollet, M., Siekmann, J. (2006). Reductio ad Absurdum: Planning Proofs by Contradiction. In: Stock, O., Schaerf, M. (eds) Reasoning, Action and Interaction in AI Theories and Systems. Lecture Notes in Computer Science(), vol 4155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11829263_3

Download citation

  • DOI: https://doi.org/10.1007/11829263_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37901-0

  • Online ISBN: 978-3-540-37902-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics