Skip to main content

Approximating Precedence-Constrained Single Machine Scheduling by Coloring

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2006, RANDOM 2006)

Abstract

This paper investigates the relationship between the dimension theory of partial orders and the problem of scheduling precedence-constrained jobs on a single machine to minimize the weighted completion time. Surprisingly, we show that the vertex cover graph associated to the scheduling problem is exactly the graph of incomparable pairs defined in dimension theory. This equivalence gives new insights on the structure of the problem and allows us to benefit from known results in dimension theory. In particular, the vertex cover graph associated to the scheduling problem can be colored efficiently with at most k colors whenever the associated poset admits a polynomial time computable k-realizer. Based on this approach, we derive new and better approximation algorithms for special classes of precedence constraints, including convex bipartite and semi-orders, for which we give \((1+\frac{1}{3})\)-approximation algorithms. Our technique also generalizes to a richer class of posets obtained by lexicographic sum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambühl, C., Mastrolilli, M.: Single machine precedence constrained scheduling is a vertex cover problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 28–39. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of weighted completion times on a single machine. Discrete Applied Mathematics 98(1-2), 29–38 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine. Operations Research Letters 25, 199–204 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Correa, J.R., Schulz, A.S.: Single machine scheduling with precedence constraints. IPCO 2004 30(4), 1005–1021 (2005); Extended abstract in Proceedings of the 10th Conference on Integer Programming and Combinatorial Optimization (IPCO 2004), pp. 283–297 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dushnik, B., Miller, E.: Partially ordered sets. American Journal of Mathematics 63, 600–610 (1941)

    Article  MathSciNet  Google Scholar 

  6. Felsner, S., Möhring, R.: Semi order dimension two is a comparability invariant. Order (15), 385–390 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Felsner, S., Trotter, W.T.: Dimension, graph and hypergraph coloring. Order 17(2), 167–177 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM Journal on Computing 31(2), 601–625 (2002)

    Article  MathSciNet  Google Scholar 

  9. Graham, R., Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. In: Annals of Discrete Mathematics, vol. 5, pp. 287–326. North–Holland, Amsterdam (1979)

    Google Scholar 

  10. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line algorithms. Mathematics of Operations Research 22, 513–544 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Applied Mathematics 6, 243–254 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kolliopoulos, S.G., Steiner, G.: Partially-ordered knapsack and applications to scheduling. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 612–624. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Annals of Discrete Mathematics 2, 75–90 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of scheduling under precedence constraints. Operations Research 26, 22–35 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Margot, F., Queyranne, M., Wang, Y.: Decompositions, network flows and a precedence constrained single machine scheduling problem. Operations Research 51(6), 981–992 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Möhring, R.H.: Computationally tractable classes of ordered sets. In: Rival, I. (ed.) Algorithms and Order, pp. 105–193. Kluwer Academic, Dordrecht (1989)

    Google Scholar 

  17. Pisaruk, N.N.: A fully combinatorial 2-approximation algorithm for precedence-constrained scheduling a single machine to minimize average weighted completion time. Discrete Applied Mathematics 131(3), 655–663 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Potts, C.N.: An algorithm for the single machine sequencing problem with precedence constraints. Mathematical Programming Study 13, 78–87 (1980)

    MATH  MathSciNet  Google Scholar 

  19. Rabinovitch, I.: The dimension of semiorders. Journal of Combinatorial Theory Series A(25), 50–61 (1978)

    MathSciNet  Google Scholar 

  20. Schulz, A.S.: Scheduling to minimize total weighted completion time: Performance guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)

    Google Scholar 

  21. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of Scheduling 2(5), 203–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins University Press (1992)

    Google Scholar 

  23. Trotter, W.T.: New perspectives on interval orders and interval graphs. In: Bailey, R.A. (ed.) Surveys in Combinatorics, London. Mathematical Society Lecture Note Series, vol. 241, pp. 237–286 (1997)

    Google Scholar 

  24. Woeginger, G.J.: On the approximability of average completion time scheduling under precedence constraints. Discrete Applied Mathematics 131(1), 237–252 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yannakakis, M.: On the complexity of partial order dimension problem. SIAM Journal on Algebraic and Discrete Methods 22(3), 351–358 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambühl, C., Mastrolilli, M., Svensson, O. (2006). Approximating Precedence-Constrained Single Machine Scheduling by Coloring. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2006 2006. Lecture Notes in Computer Science, vol 4110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11830924_4

Download citation

  • DOI: https://doi.org/10.1007/11830924_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38044-3

  • Online ISBN: 978-3-540-38045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics