Skip to main content

Abstract

In the minimum entropy set cover problem, one is given a collection of k sets which collectively cover an n-element ground set. A feasible solution of the problem is a partition of the ground set into parts such that each part is included in some of the k given sets. The goal is to find a partition minimizing the (binary) entropy of the corresponding probability distribution, i.e., the one found by dividing each part size by n. Halperin and Karp have recently proved that the greedy algorithm always returns a solution whose cost is at most the optimum plus a constant. We improve their result by showing that the greedy algorithm approximates the minimum entropy set cover problem within an additive error of 1 nat = log2 e bits ≃ 1.4427 bits. Moreover, inspired by recent work by Feige, Lovász and Tetali on the minimum sum set cover problem, we prove that no polynomial-time algorithm can achieve a better constant, unless P = NP. We also discuss some consequences for the related minimum entropy coloring problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Orlitsky, A.: Source coding and graph entropies. IEEE Trans. Inform. Theory 42(5), 1329–1339 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cardinal, J., Fiorini, S., Joret, G.: Minimum entropy coloring. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 819–828. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. System Sci. 57(2), 187–199 (1998); Complexity 96—The Eleventh Annual IEEE Conference on Computational Complexity, Philadelphia, PA

    Article  MATH  MathSciNet  Google Scholar 

  5. Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40(4), 219–234 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feller, W.: An introduction to probability theory and its applications, 3rd edn., vol. I. John Wiley & Sons Inc., New York (1968)

    MATH  Google Scholar 

  7. Grötschel, M., Lovász, L., Schrijver, A. (eds.): Geometric algorithms and combinatorial optimization, 2nd edn. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1993)

    MATH  Google Scholar 

  8. Halperin, E., Karp, R.M.: The minimum-entropy set cover problem. Theoret. Comput. Sci. 348(2-3), 240–250 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988); Reprint of the 1952 edition

    Google Scholar 

  10. Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maximum weight stable set of a claw-free graph. J. Oper. Res. Soc. Japan 44(2), 194–204 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardinal, J., Fiorini, S., Joret, G. (2006). Tight Results on Minimum Entropy Set Cover. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2006 2006. Lecture Notes in Computer Science, vol 4110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11830924_8

Download citation

  • DOI: https://doi.org/10.1007/11830924_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38044-3

  • Online ISBN: 978-3-540-38045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics