Skip to main content

Universal Designated Verifier Signatures Without Random Oracles or Non-black Box Assumptions

  • Conference paper
Security and Cryptography for Networks (SCN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4116))

Included in the following conference series:

  • 981 Accesses

Abstract

Universal designated verifier signatures (UDVS) were introduced in 2003 by Steinfeld et al. to allow signature holders to monitor the verification of a given signature in the sense that any plain signature can be publicly turned into a signature which is only verifiable by some specific designated verifier. Privacy issues, like non-dissemination of digital certificates, are the main motivations to study such primitives. In this paper, we propose two fairly efficient UDVS schemes which are secure (in terms of unforgeability and anonymity) in the standard model (i.e. without random oracles). Their security relies on algorithmic assumptions which are much more classical than assumptions involved in the two only known UDVS schemes in standard model to date. The latter schemes, put forth by Zhang et al. in 2005 and Vergnaud in 2006, rely on the Strong Diffie-Hellman assumption and the strange-looking knowledge of exponent assumption (KEA). Our schemes are obtained from Waters’s signature and they do not need the KEA assumption. They are also the first random oracle-free constructions with the anonymity property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. An, J.-H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Barreto, P.S.L.M., Scott, M.: Compressed Pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

    Google Scholar 

  3. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bellare, M., Palacio, A.: The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)

    Google Scholar 

  5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. of ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

    Chapter  Google Scholar 

  6. Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Constructions Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. Journal of the ACM 51(4), 557–594 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

    Google Scholar 

  12. Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Damgård., I.: Towards practical public-key cryptosystems provably-secure against chosen-ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)

    Google Scholar 

  14. Dent, A.: The Hardness of the DHK Problem in the Generic Group Model. Cryptology ePrint Archive: report 2006/156 (2006)

    Google Scholar 

  15. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  16. Galbraith, S., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hada, S., Tanaka, T.: On the Existence of 3-Round Zero-Knowledge Protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–442. Springer, Heidelberg (1998)

    Google Scholar 

  19. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 142–154. Springer, Heidelberg (1996)

    Google Scholar 

  20. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Ogata, W., Kurosawa, K., Heng, S.-H.: The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 328–345. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Laguillaumie, F., Vergnaud, D.: Designated Verifiers Signature: Anonymity and Efficient Construction from any Bilinear Map. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 107–121. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Laguillaumie, F., Vergnaud, D.: Multi-Designated Verifiers Signature Schemes. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 495–507. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Lipmaa, H., Wang, G., Bao, F.: Designated Verifier Signature Schemes: Attacks, New Security Notions and a New Construction. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 459–471. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Naccache, D.: Secure and Practical Identity-Based Encryption. Cryptology ePrint Archive: report 2005/369 (2005)

    Google Scholar 

  26. Ng, C.Y., Susilo, W., Mu, Y.: Universal Designated Multi Verifier Signature Schemes. In: Proc. of SNDS 2005, pp. 305–309. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  27. Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Saeednia, S., Kremer, S., Markowitch, O.: An Efficient Strong Designated Verifier Signature Scheme. In: Proc. of ICISC 2003. LNCS, vol. 2836, pp. 40–54. Springer, Heidelberg (2003)

    Google Scholar 

  29. Sarkar, P., Chatterjee, S.: Trading time for space: Towards an efficient IBE scheme with short(er) public parameters in the standard model. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (to appear, 2006)

    Chapter  Google Scholar 

  30. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  31. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal Designated-Verifier Signatures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  32. Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient Extension of Standard Schnorr/RSA Signatures into Universal Designated-Verifier Signatures. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  33. Vergnaud, D.: New Extensions of Pairing-Based Signatures into Universal Designated Verifier Signatures. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 58–69. Springer, Heidelberg (to appear, 2006)

    Chapter  Google Scholar 

  34. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  35. Zhang, R., Furukawa, J., Imai, H.: Short signature and Universal Designated Verifier Signature without Random Oracles. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 483–498. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laguillaumie, F., Libert, B., Quisquater, JJ. (2006). Universal Designated Verifier Signatures Without Random Oracles or Non-black Box Assumptions. In: De Prisco, R., Yung, M. (eds) Security and Cryptography for Networks. SCN 2006. Lecture Notes in Computer Science, vol 4116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11832072_5

Download citation

  • DOI: https://doi.org/10.1007/11832072_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38080-1

  • Online ISBN: 978-3-540-38081-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics