Abstract
One of the big issues facing current content-based image retrieval is how to automatically extract the semantic information from images. In this paper, we propose an efficient method that automatically extracts the semantic information from images by using ontologies and the semantic inference rules. In our method, MPEG-7 visual descriptors are used to extract the visual features of image which are mapped to the semi-concept values. We also introduce the visual and animal ontology which are built to bridge the semantic gap. The visual ontology facilitates the mapping between visual features and semi-concept values, and allows the definition of relationships between the classes describing the visual features. The animal ontology representing the animal taxonomy can be exploited to identify the object in an image. We also propose the semantic inference rules that can be used to automatically extract high-level concepts from images by applying them to the visual and animal ontology. Finally, we discuss the limitations of the proposed method and the future work.
This work was supported by Korea Research Foundation Grant funded by Korea Government(MOEHRD, Basic Research Promotion Fund, KRF-2005-003-D00288).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pentland, A., Picard, R., Sclaroff, S.: Photobook: Tools for Content-Based Manipulation of Image Databases. In: SPIE Storage and Retrieval of Image & Video Databases II (1994)
Smith, J.R., Chang, S.-F.: VisualSEEk: a fully automated content-based image query system. ACM Multimedia 96 (1996)
Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A System for Region-Based Image Indexing and Retrieval. In: Third International Conference on Visual Information Systems (1999)
Zhu, X., Fan, J., Elmagarmid, A.K., Wu, X.: Hierarchical video content description and summarization using unified semantic and visual similarity. Multimedia Syst. 9(1), 31–53 (2003)
Schreiber, A.T., Dubbeldam, B., Wielemaker, J., Wielinga, B.J.: Ontology-based photo annotation. IEEE Intelligent Systems, 66–74 (2001)
Jiang, S., Huang, T., Gao, W.: An Ontology-based Approach to Retrieve Digitized Art Images. Web Intelligence, 131–137 (2004)
Mezaris, V., Kompatsiaris, I., Strintz, M.G.: Region-based Image Retrieval using an Object Ontology and Relevance Feedback. In: EURASIP JASP (2004)
Fan, J., Gao, Y., Luo, H., Xu, G.: Statistical modeling and conceptualization of natural images. Pattern Recognition 38(6), 865–885 (2005)
ISO/IEC 15938-5 FDIS Information Technology. MPEG-7 Multimedia Content Description Interface - Part 5: Multimedia Description Schemes (2001)
Spyrou, E., Le Borgne, H., Mailis, T., Cooke, E., Avrithis, Y., O’Connor, N.: Fusing MPEG-7 visual Descriptors for image classification. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 11–15. Springer, Heidelberg (2005)
Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7. wiley, Chichester (2002)
Mokhtarian, F., Bober, M.: The Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization. Kluwer Academic Publishers, Dordrecht (2002)
Park, D.K., Jeon, Y.S., Won, C.S., Park, S.-J.: Efficient use of local edge histogram descriptor. In: Proceedings of ACM International Workshop on Standards, Interoperability and Practices, Marina del Rey, California, USA, pp. 52–54 (2000)
McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recommendation (2004), http://www.w3c.org/TR/owl-features/
Lassila, O., Swick, R.: Resource Description Framework(RDF) Model and Syntax Specification. W3C Recommendation, World Wide Web Consortioum (1999)
Hewlett-Packard: Jena Semantic Web Framework (2003), http://jena.sourceforge.net/
UMBC, F-OWL: An OWL Inference Engine in Flora-2, http://fowl.sourceforge.net/
Gandon, F.L., Sadeh, N.: OWL inference engine using XSLT and JESS, http://mycampus.sadehlab.cs.cmu.edu/public_pages/OWLEngine.html
Jang, M., Sohn, J.-C.: Bossam: An Extended Rule Engine for OWL Inferencing. RuleML 2004, 128–138 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Park, KW., Lee, DH. (2006). Full-Automatic High-Level Concept Extraction from Images Using Ontologies and Semantic Inference Rules. In: Mizoguchi, R., Shi, Z., Giunchiglia, F. (eds) The Semantic Web – ASWC 2006. ASWC 2006. Lecture Notes in Computer Science, vol 4185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11836025_31
Download citation
DOI: https://doi.org/10.1007/11836025_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38329-1
Online ISBN: 978-3-540-38331-4
eBook Packages: Computer ScienceComputer Science (R0)