Skip to main content

Automatic Creation and Simplified Querying of Semantic Web Content: An Approach Based on Information-Extraction Ontologies

  • Conference paper
The Semantic Web – ASWC 2006 (ASWC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4185))

Included in the following conference series:

  • 1081 Accesses

Abstract

The semantic web represents a major advance in web utility, but it is currently difficult to create semantic-web content because pages must be semantically annotated through processes that are mostly manual and require a high degree of engineering skill. Furthermore, users need an effective way to query the semantic web, but any burden placed on users to learn a query language is unlikely to garner sufficient user support and interest. Unfortunately, both the creation and use of semantic-web pages are difficult, and these are precisely the processes that must be made simple in order for the semantic web to truly succeed. We propose using information-extraction ontologies to handle both of these challenges. In this paper we show how a successful ontology-based data-extraction technique can (1) automatically generate semantic annotations for ordinary web pages, and (2) support free-form, textual queries that will be relatively simple for end users to write.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arlotta, L., Crescenzi, V., Mecca, G., Merialdo, P.: Automatic annotation of data extracted from large web sites. In: Proc. Sixth International Workshop on the Web and Databases (WebDB 2003), San Diego, California, June 2003, pp. 7–12 (2003)

    Google Scholar 

  2. Berners-Lee, T., Hendler, J., Lassila, O.: TheSemanticWeb. ScientificAmerican 36(25), 34–43 (2001)

    Article  Google Scholar 

  3. Homepage, BYU Data Extraction Group, http://www.deg.byu.edu

  4. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., McCurley, K.S., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: A Case for Automated Large Scale Semantic Annotations. Journal of Web Semantics 1(1), 115–132 (2003)

    Google Scholar 

  5. Embley, D.W., Kurtz, B.D., Woodfield, S.N.: Object-oriented Systems Analysis: AModel-Driven Approach. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  6. Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Ng, Y.-K., Smith, R.D.: Conceptual-model-based data extraction from multiple-record web pages. Data & Knowledge Engineering 31(3), 227–251 (1999)

    Article  MATH  Google Scholar 

  7. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)

    Article  Google Scholar 

  8. Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM Semi-automatic CREAtion of Metadata. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 358–372. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation, Indexing, and Retrieval. Journal of Web Semantics 2(1), 49–79 (2004)

    Google Scholar 

  10. Lerman, K., Minton, S.N., Knoblock, C.A.: Wrapper maintenance: A machine learning approach. Journal of Artificial Intelligence Research 18, 149–181 (2003)

    MATH  Google Scholar 

  11. Maier, D.: The Theory of Relational Databases. Computer Science Press, Inc., Rockville (1983)

    MATH  Google Scholar 

  12. Mukherjee, S., Yang, G., Ramakrishnan, I.V.: Automatic Annotation of Content- Rich HTML Documents: Structural and Semantic Analysis. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 533–549. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. W3C (World Wide Web Consortium). OWL Web Ontology Language Reference, http://www.w3.org/TR/owl-ref/

  14. Sheth, A., Ramakrishnan, C.: Semantic (Web) technology in action: Ontology driven information systems for search, integration and analysis. IEEE Data Engineering Bulletin 26(4), 40–48 (2003)

    Google Scholar 

  15. W3C (WorldWideWeb Consortium). SPARQL Query Language for RDF (February 2006), http://www.w3.org/TR/rdf-sparql-query/

  16. Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.: MnM: Ontology Driven Tool for SemanticMarkup. In: Proc.Workshop Semantic Authoring, Annotation & KnowledgeMarkup (SAAKM 2002), Lyon, France, pp. 43–47 (July 2002)

    Google Scholar 

  17. Vickers, M.: Ontology-Based Free-Form Query Processing for the Semantic Web. Masters Thesis, Brigham Young University, Provo, Utah (June 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, Y., Embley, D.W., Liddle, S.W. (2006). Automatic Creation and Simplified Querying of Semantic Web Content: An Approach Based on Information-Extraction Ontologies. In: Mizoguchi, R., Shi, Z., Giunchiglia, F. (eds) The Semantic Web – ASWC 2006. ASWC 2006. Lecture Notes in Computer Science, vol 4185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11836025_40

Download citation

  • DOI: https://doi.org/10.1007/11836025_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38329-1

  • Online ISBN: 978-3-540-38331-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics