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Abstract. The semantic web represents a major advance in web utility,
but it is difficult to create semantic-web content because pages must be
semantically annotated through processes that are mostly manual and
require a high degree of engineering skill. Furthermore, users need an
effective way to query the semantic web, but any burden we place on
users to learn a query language is unlikely to garner sufficient user sup-
port and interest. If we want users to take advantage of the semantic
web, we must devise a means for transforming existing (non-semantic)
web pages into semantic web pages, and we must provide a simple and
unrestricted interface for processing user queries. We propose using infor-
mation extraction ontologies to handle both of these challenges. We show
how a successful ontology-based data-extraction technique can (1) auto-
matically generate semantic annotations for ordinary web pages, and (2)
support free-form, textual queries. Our approach demonstrates how the
semantic web can be created for and used by ordinary people. We have
created an initial prototype to demonstrate that our proposal works.

Keywords: Semantic Web Annotation, Natural Language Semantic Web
Queries, Information-Extraction Ontologies.

1 Introduction

The sheer volume of web content forces people to rely on machines to help
search for information. Search engines help, but by themselves are not enough.
Google, for example, does a phenomenal job ranking billions of web pages and
identifying useful candidates, often presenting the page a user wants within the
first few search results. The problem, however, is not what search engines do, but
what they cannot do. Keyword-based searching restricts the types of questions
people can ask. For example, users cannot make requests like, “Find me a red
Nissan for under $5000 – it should be a 1990 or newer and have less than 120K
miles on it.” The required information is out there on the web, but search engines
cannot answer this type of question because they do not know how to match the
specified concepts in the request to data instances in the web.

A solution to this problem is to design a new type of machine-understandable
web representation and develop web pages based on the new format, i.e. develop
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Fig. 1. Sample Car Ads from Salt Lake City Weekly and Athens Banner-Herald Sites.

the semantic web [3]. We make semantic-web content machine understandable
through ontologies, which are commonly shared, explicitly defined, generic con-
ceptualizations [19]. But then the dilemma is how to deal with current web pages.
There are billions of pages in the current web, and few web developers would
be willing to rewrite their pages according to some new, semantic-web standard,
especially if this would require tedious manual labeling of documents.

Web semantic annotation research attempts to resolve this dilemma. The
goal of web semantic annotation research is to add comments to web content so
that it becomes machine understandable. Unlike an annotation in the normal
sense, which is an unrestricted note, a semantic annotation must be explicit,
formal, and unambiguous: explicit makes a semantic annotation publicly acces-
sible, formal makes a semantic annotation publicly agreeable, and unambiguous
makes a semantic annotation publicly identifiable. These three properties en-
able machine understanding, and annotating with respect to an ontology makes
this possible. In this paper we show how to automatically annotate existing web
pages with respect to an ontology.

Even if we annotate pages with respect to an ontology, however, we have
still not completely solved our problem because we must provide a way for users
to query these semantic web pages. We argue in this paper that any learning
burden we place on users, such as learning how to use a query system, is not
likely to be successful, and thus we must provide users with the ability to query
the semantic web using free-form text queries that have no requirements other
than providing a statement of what is wanted. We then show how to enable this
possibility for domains of information on the semantic web, which we assume to
be ontology-based, annotated, human-readable web pages.



Color Make Price Year Mileage Source

NISSAN $4,500 1993 117K Car01
....

NISSAN $900 ’93 Car13
....

Fig. 2. Query Results.

To clarify our intentions, we give an example. Figure 1 shows two ordinary,
human-readable web pages for selling cars. Our system can annotate these pages
automatically with respect to a given ontology about car advertisements and
thus can convert them to semantic web pages so that these pages also exist in
machine-readable form. Furthermore, our system can answer ordinary, natural-
language text queries over semantic web pages. Thus, assuming our annotation
system had already created semantic web pages for Figure 1, the query, “Find me
a red Nissan for under $5000 – it should be a 1990 or newer and have less than
120K miles on it,” would yield results such as those in Figure 2. The results in
Figure 2 are actual answers to the query in a table whose header attributes are
the concept names from the given car-ads ontology, restricted to those concepts
mentioned in the query. In addition, there is always one additional attribute,
Source, whose values are links back into the original documents at the location
where the information is provided. When a user clicks on Car01, the link in the
first row, for example, the document in Figure 1 from the Athens site appears,
except it would be scrolled to the right place and the information requested in
the query would be highlighted.

We give the details of our contributions of both automatically creating se-
mantic web content and providing a simple way to query semantic web content
as follows. Section 2 describes information-extraction (IE) ontologies, which are
the basis for both our automated semantic-web annotation tool and our simple-
to-use semantic-web query tool. Section 3 argues that IE ontologies may well
provide the best alternative for automatically annotating much of the current
web. It makes this argument by surveying related work and showing how the
approach based on IE ontologies resolves problems others have faced. Section 4
describes our prototype work on automatically annotating existing web pages so
that they can be used for the semantic web. Section 5 describes our prototype
work on semantic web queries and shows how we can use extraction ontologies
to simplify query requirements for semantic-web users. Finally, in Section 6 we
make concluding remarks and consider future work, including both limitations
and extensions of the work proposed here.

2 Information-Extraction Ontologies

We have described information-extraction ontologies elsewhere [13], but to make
our paper self-contained, we briefly reintroduce them here. We have used them
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Fig. 3. Graphical Component of an Extraction Ontology.

in a number of applications, including information extraction itself [13], high-
precision classification [16], and schema mapping for ontology alignment [34]. In
this paper we show how to use them for semantic web annotation (Section 4)
and semantic web queries (Section 5).

An extraction ontology specifies named sets of objects, which we call object
sets or concepts, and named sets of relationships among object sets, which we call
relationship sets. Figure 3 shows a graphical rendition of an extraction ontology
for car advertisements. The extraction ontology has two types of concepts: lexical
concepts (enclosed in dashed rectangles) and nonlexical concepts (enclosed in
solid rectangles). A concept is lexical if its instances are indistinguishable from
their representations. Mileage is an example of a lexical concept because its
instances (e.g. “117K” and “5,700”) represent themselves. A concept is nonlexical
if its instances are object identifiers, which represent real-world objects. Car is
an example of a nonlexical concept because its instances are identifiers such as,
say, “Car01”, which represents a particular car in the real world. An extraction
ontology also provides for explicit concept instances (denoted as large black
dots). We designate the main concept in an extraction ontology by marking it
with “->•” in the upper right corner, which denotes that the object set Car
becomes (“->”) an object instance (“•”) for a single car ad.

Figure 3 also shows relationship sets among concepts, represented by con-
necting lines, such as the connecting line between Car and Year. The numbers
near the connections between relationship sets and object sets are participation
constraints. Participation constraints give the minimum and maximum partici-
pation of an object in an object set with respect to the connected relationship
set. For example, the 0:1 participation constraint on Car in the Car-Mileage
relationship set denotes that a car need not have a mileage in a car ad, but if
it does, it has only one. A white triangle defines a generalization/specialization



with the generalization connected to the apex of the triangle and one or more
specializations connected to its base. In Figure 3, for example, Feature is a gen-
eralization of Engine and BodyType, among others. The white triangle can, of
course, appear repeatedly, and thus we can have large ISA hierarchies in an ex-
traction ontology. A black triangle defines an aggregation with the aggregation
connected to the apex of the triangle and the component parts connected to its
base. In Figure 3, for example, ModelTrim is an aggregation of the Model and
the Trim. Like ISA hierarchies, large aggregation hierarchies are also possible.

As a key feature of extraction ontologies, the concepts each have an asso-
ciated data frame. A data frame describes information about a concept—its
external and internal representations, its contextual keywords or phrases that
may indicate the presence of an instance of the concept, operations that convert
between internal and external representations, and other manipulation opera-
tions that can apply to instances of the concept along with contextual keywords
or phrases that indicate the applicability of an operation. Figure 4 shows sample
(partial) data frames for the concepts Price and Make in our ontology for car
advertisements. As Figure 4 shows, we use regular expressions to capture exter-
nal representations. The Price data frame, for example, captures instances of
this concept such as “$4500” and “17,900”. A data frame’s context keywords are
also regular expressions. The Price data frame in Figure 4, for example, includes
context keywords such as “asking” and “negotiable”. In the context of one of
these keywords, if a number appears, it is likely that this number is a price. The
operations of a data frame can manipulate a concept’s instances. For example,
the Price data frame includes the operation LessThan that takes two instances
of Price and returns a Boolean. The context keywords of an operation indicate
an operation’s applicability; context keywords such as “less than” and “<”, for
example, apply to the LessThan operation. Sometimes external representations
are best described by lexicons or other reference sets. These lexicons or reference
sets are also regular expressions, often simple lists of possible external represen-
tations, and can be used in place of or in combination with regular expressions.
In Figure 4, CarMake.lexicon is a lexicon of car makes, which would include,
for example, “Toyota”, “Honda”, and “Nissan” and potentially also misspellings
(e.g. “Volkswagon”) and abbreviations (e.g. “Chev” and “Chevy”).

We can apply an extraction ontology to obtain a structured representation
of the unstructured information in a relevant document. For example, given the
car-ads extraction ontology and one of the Nissan ads in Figure 1:

’93 NISSAN Model XE, $900, Air Conditioning, new tires, for listings,
call 1-800-749-8104 ext. V896.

we can extract “’93” as the Year, “NISSAN” as the Make, “XE” as the Model,
“$900” as the Price, both “Air Conditioning” and “new tires” as Features with
“Air Conditioning” also being an Accessory, and “1-800-749-8104” as the Pho-
neNr. As part of the extraction, the conversion routines in the data frames
convert these extracted values to a canonical internal representation, so that, for
example, “’93” becomes the integer 1993 and “$900” becomes the real number



Price
internal representation: Real
external representation: \$?(\d+ | \d?\d?\d,\d\d\d)
context keywords: price | asking | obo | neg(\.|otiable) | ...
...
LessThan(p1: Price, p2: Price) returns (Boolean)
context keywords: less than | < | or less | fewer | ...
...

end

Make
external representation: CarMake.lexicon
...

end

Fig. 4. Sample data frames for car ads ontology.

900. Although often simple, as illustrated here, there are sometimes subtle prob-
lems that can make extraction ontologies fail to extract correctly. Ambiguities
can occur; for example, when there are two prices (e.g., list price and selling
price). In this case, we use heuristic rules to sort out the ambiguities [13]. We
assume that we can correctly identify each individual record in a document. This
requires work on record separation [14], and sometimes requires the system to
recognize that it must distribute factored information, such as a dealer telephone
number that applies to many records, or that it must split records, such as when
multiple cars sold by one dealer appear as a single ad, or that it must access off-
page information under a link [18]. We assume also that the data is accessible,
but often it is behind forms, in which case the system must first fill in the form
and obtain the information from the hidden web [7]. Further, often the hidden
web—and sometimes the visible web too—presents data in a relatively struc-
tured form, such as a table. Surprisingly, structure causes more difficulties for
extraction ontologies than might be expected, and special techniques are needed
to handle structured information [17].

3 Semantic Annotation

Having explained what an extraction ontology is, we now discuss how to apply
extraction ontologies for annotating pages for the semantic web. A typical se-
mantic annotation process includes three components. First, an ontology must
be created to describe the domain of interest. Second, a data instance recogni-
tion process discovers instances of interest in target web documents based on
the defined ontology. Third, an annotation generation process creates a seman-
tic meaning disclosure file for each annotated document. Through the semantic
meaning disclosure file, any ontology-aware machine agent can understand the
target document.



For ontology creation, we assume either that an extraction ontology is hand
crafted or semiautomatically generated. Using tools we have developed [32] for
hand-crafting extraction ontologies of the size needed for car ads, we have found
that a few dozen person hours is sufficient for building extraction ontologies that
can extract with precision and recall both nearing 90% [13]. Others involved in
semantic annotation research [11, 20, 25, 31] also assume ontologies already exist.
Although [28] reports having tried to automatically generate ontologies for use in
semantic annotation, they also report problems with this approach, particularly
the “concept disambiguation problem” [29]. Generally, the problem of automatic
ontology generation is considered to be difficult and not currently very successful
[12], but research continues, including our own [30], and we certainly welcome a
more automated way to generate ontologies.

For data instance recognition, manual recognition and annotation aided by
tools is possible (e.g. [21, 24]). Although useful for small numbers of pages, it is
unlikely that we can use manual semantic annotation tools to convert the current
web to the semantic web. Automated semantic annotation tools are a necessity.

To develop automated annotation tools, researchers have turned to information-
extraction (IE) tools to find answers. Based on the categories in a recent survey
of IE tools [26], we can see how various IE tools do semantic annotation.
– Wrapper languages require manual specification, and thus will not scale.
– HTML-aware IE tools extract data of interest based on pre-defined HTML
layout descriptions. [2] describes an attempt to do semantic annotation with
the HTML-aware RoadRunner tool [8], but RoadRunner only finds the location
of data of interest, not the semantic meaning of the data with respect to an
ontology. This necessitates manual labeling or aligning the data extracted with
an ontology, a task which the authors of [2] point out is not easy.
– NLP-based IE tools analyze text using NLP (Natural Language Processing)
techniques. There are several current efforts to adapt these IE tools for semantic
annotation [20, 25, 31]. Unfortunately, as currently constructed, these tools also
suffers from the need to align extracted information with whatever domain ontol-
ogy they use for semantic annotation. [25] explains, saying, “The main drawback
... is that none of these approaches expects an input or produces output with
respect to ontologies. [Thus,] ... a set of heuristics for post-processing and map-
ping of the IE results to an ontology ... [is needed].” Further, NLP-based IE tools
only work well with sentential text; they do not work well with telegraphic text
or with structured or semi-structured data, which constitutes much of the web.
– ILP-based tools learn the formatting features that implicitly delineate the
structure of data found in a page. [11] uses this type of IE tool for semantic
annotation. Similar to HTML-aware and NLP-based IE tools, an ontology is not
part of the input, and thus ILP-based IE tools have the same postprocessing
alignment issues. Further, machine learning processes usually need a large set of
training documents, which must be labeled, usually manually.
– Modeling-based IE tools adapt supervised machine learning approaches to do
data extraction. Because this IE technique requires human-guided supervised
learning, it is likely to be hard to scale this type of tool for large applications.



– Ontology-based IE tools (e.g. [1, 9, 13, 27]) apply pre-defined data-extraction
ontologies to perform data extraction. Since this type of tool extracts information
with respect to an ontology, no separate alignment of concepts is necessary. We
argue that these types of tools are likely to be the best for developing automated
semantic web annotation tools.

Previous to the work proposed here, no attempt has been made to use
ontology-based IE tools for semantic annotation. Besides the benefit of elim-
inating the additional alignment between concepts in domain ontologies and
extraction categories in IE engines, ontology-based IE tools also have the bene-
fit of being resilient to the layouts of web pages and immediately work with new
web pages in the same domain. These features allow this technique to scale up
because extraction ontologies neither need to be rewritten nor regenerated for
pages that change and for new pages within the domain that come online.

4 IE-Based Semantic Web Annotation

How should we record and store annotations for the semantic web? Although
it is likely to be straightforward to adapt our work proposed here to any set
of guidelines provided by the semantic web community, we know of no current,
agreed-upon guidelines. Generally speaking, we can see two ways to achieve this
goal: explicit annotation, which adds special tags that bind tagged instances in
a web page to an externally specified ontology, and implicit annotation, which
adds nothing explicit to the document, but instead extracts instance position in-
formation as well as the data instances and stores them in an externally specified
ontology. As examples, [22] shows how to do explicit annotation (most others
have followed this lead), and [23] shows how to do implicit annotation.

Using explicit annotation, we have created an online demo [10] of our se-
mantic annotation tool. Figure 5 is a screen shot showing that our system has
extracted specific information from a web site containing car ads and has, in ad-
dition, annotated the web page so that we can highlight extracted information
with the hover feature of HTML. The hover feature is only for the demo. For
the annotation itself, we include a four-tuple in each tag for every recognized
data instance x. This four-tuple uniquely identifies (1) the ontology used for
annotation (in case there are several for the same document), (2) the concept
within the ontology to which x belongs, (3) the record number for x so that
the system knows which values relate together to form a record, and (4) a value
number within the record in case more than one instance of the concept can ap-
pear within a record. Thus, for example, we annotate the value 117K in Figure 5
by <span class=“(CarAds,Mileage,13,0)”>117K</span>. Here CarAds is the
ontology, Mileage is the concept, 13 is the record number, and 0 is the value
number. Span annotations along with a URL specifying an OWL ontology allow
the system to create the equivalent of a populated semantic ontology for each
annotated page.

For implicit annotation, we start by generating an OWL ontology from an
extraction ontology. Then we augment the OWL ontology with instance data.



Fig. 5. Sample Annotated Page from Demo: Car Ads from Athens Site.

Figure 6 shows a portion of an implicit annotation for the Athens web page
in Figure 1. When we do implicit annotation, we also cache a copy of the web
page so that we can guarantee that the instance position information is correct.
Figure 6 shows that for our implementation we have cached the web page on our
web site. Following the URL in Figure 6, we show the beginning of our CarAds
ontology. Next, we add the instances. Figure 6 shows the mileage instance 117K,
its canonical value 117000, and its character offset 37733 in the cached web
page. Observe that we give each instance a unique identifier, MileageIns13 for
the 117K in our example. We then collect all the instances together as a record.
The OWL Thing in Figure 6 is the record about CarAdsIns13, which includes the
unique identifiers of its price, year, make, etc. This semantic meaning disclosure
file fully annotates the Athens web page in Figure 1.

Both annotation techniques have their own benefits and drawbacks. Explicit
annotation favors situations in which web pages frequently change but only with
minor modifications (e.g., daily price updates of items for sale). Thus, if up-
dates are done correctly, neither anyone nor any annotation system needs to
re-annotate the changed document because the updated content is still within
proper explicit tags. This advantage does not hold for implicit annotation be-
cause updates may change the length of strings and thus the offset positions of



<?xml version=“1.0”?>
<rdf:RDF
...

xmlns:webpage=“http://www.deg.byu.edu/demos/...”
...

<owl:Class rdf:ID=“CarAds”>
...

<carads:Mileage rdf:ID=“MileageIns13”>
<carads:MileageValue rdf:datatype=“xs:string”>117K</carads:MileageValue>
<carads:MileageCanonicalValue rdf:datatype=“xs:nonNegativeInteger”>117000

</carads:MileageCanonicalValue>
<offset rdf:datatype=“xs:nonNegativeInteger”>37733</offset>

</carads:Mileage>
...

<owl:Thing rdf:about=“#CarAdsIns13”>
<hasPrice rdf:resource=“#PriceIns13” />
<hasYear rdf:resource=“#YearIns13” />
<hasMake rdf:resource=“#MakeIns13” />

...
</owl:Thing>

...
</rdf:RDF>

Fig. 6. Implicit Annotation for Car Ads Web Page.

data instances. For explicit annotation to work, the annotation system must be
able to write explicit tags in web pages owned by others; thus, issues about who
controls what and who has which permissions must be addressed and resolved.

Implicit annotation favors situations in which (1) web pages change infre-
quently or change in ways that would destroy explicit annotation and (2) we may
wish to annotate a page using more than one ontology. Because we cache web
pages when we use implicit annotation, the information may be outdated. We
can, of course, obtain the current page and re-annotate it, but this can be costly
if re-annotation must be frequent to keep the page up to date. If we annotate a
web page with several ontologies, implicit annotation is likely to be better be-
cause the multiple explicit tags can cause confusion and may even require illegal
tag nesting: <tag1> data1 <tag2 > common data </tag1> data2 </tag2 >.

With respect to query processing, which we discuss in the next section, we
point out that it is possible to query both explicit and implicit annotations. It
is more convenient, however, to query implicit annotations because all values
are in the same XML document. Thus, for example, we can issue an XQuery
statement to query implicit annotations but not to query explicit annotations.

5 IE-Based Semantic Web Queries

The authors of [5] discuss principles and desirable features for web query lan-
guages. In their “Verbalizing” principle, they advocate “some form of controlled
natural language processing” and point out that the success of web search engines
demonstrates the importance of “a seemingly free-form, ‘natural’ interface.” We
agree, and we further advocate an even stronger position. For many ordinary
users of the semantic web, we believe that queries should be totally free-form,



natural-language text, with no restrictions. The problem then becomes how to
interpret the query. It is easy to suppose that natural language processing (NLP)
can solve this problem, but pure NLP techniques have not proven to be very suc-
cessful for question/answer systems (as witnessed by the flurry of early NLP work
for database querying, which has since died out). Furthermore, free-form natural
text may be telegraphic (may be short, sometimes non-grammatical, and often
incomplete phrases), on which NLP techniques typically do not work well. [4]
suggests the use of controlled natural language. Perhaps this may be necessary
and potentially could be successful. Users, however, must learn and adjust to
artificial requirements imposed over the syntax and semantics of the language.
Many ordinary users may neither have the patience to learn the nuances of the
language nor the skill necessary to make the required adjustments.

In light of these requirements (the need for free-form, natural-language-like
text) and difficulties (the problems of traditional NLP and controlled natural
languages), we propose a different approach. Our approach may be characterized
as an information-extraction, ontology-based natural-language-like approach. The
essence of the idea is to (1) extract constants, keywords, and keyword phrases in
a natural-language or telegraphic query; (2) find the best-match ontology; and
(3) embed the query in the ontology yielding (3a) a join over the relationship-
set paths connecting identified concepts, (3b) a selection on identified constants
modified by identified operators, and (3c) a projection on mentioned concepts.
Our expectation for success is based on arguments in [6] suggesting the possibility
of using ontologies to help build better question/answer systems and on our
experience long ago with attempting to do “NLP” over conceptual models [15].

Consider our running example, where the user specifies, “Find me a red Nis-
san for under $5000 – it should be a 1990 or newer and have less than 120K
miles on it.” The best-matching extraction ontology from our library is the car-
ads ontology. When we apply our car-ads extraction ontology to this sentence,
we discover that the desired object has restrictions on five concepts: color, make,
price, year, and mileage. For string-valued concepts (color and make), we can test
equality (either equal or not equal). Since there are no keyword phrases in the
query that indicate negation, in this case we search for objects where Color=red
and Make=Nissan. For numeric concepts (price, year, and mileage), we can test
ranges. Associated with each operator in a data frame are keywords or phrases
that indicate when the operator applies. In this case, “under” indicates a less-
than comparison, “or newer” indicates ≥, and “less than” indicates <. So in our
example, we must search for Price < 5000, Year ≥ 1990, and Mileage < 120000.
Recall, from our discussion in Section 2, that our data frames specify operators
that convert a string to a canonical internal representation. Thus, for example,
“120K” becomes 120000 when we invoke the canonicalization operator. The re-
sult of this extraction over the user-specified query is a set of filters that indicate
concept name, operator, value, and optionality (whether a value may or must
appear according to the participation constraints in the extraction ontology). In
the search process, we look for objects that satisfy all the filter expressions. The
particular concept filters for our example include: 〈Color, =, red, true〉, 〈Make,



for $doc in document(URL)/rdf:RDF return
<QueryResult> {
for $Record in $doc/owl:Thing
let $id := substring-after(xs:string($Record/@rdf:about), “CarAdsIns”)
let $Color := $doc/carads:Color[@rdf:ID=concat(“ColorIns”, $id)]/carads:ColorValue/text()
let $Make := $doc/carads:Make[@rdf:ID=concat(“MakeIns”, $id)]/carads:MakeValue/text()
let $Price := $doc/carads:Price[@rdf:ID=concat(“PriceIns”, $id)]/carads:PriceValue/text()
let $Year := $doc/carads:Year[@rdf:ID=concat(“YearIns”, $id)]/carads:YearValue/text()
let $Mileage := $doc/carads:Mileage[@rdf:ID=concat(“MileageIns”, $id)]/carads:MileageValue/text()
where ($Color = “red” or empty($Color)) and ($Make = “Nissan” or empty($Make)) and

($Price < 5000 or empty($Price)) and ($Year >= 1990 or empty($Year)) and
($Mileage < 120000 or empty($Mileage))

return <Record ID=“{$id}”> <Color>{$Color}</Color><Make>{$Make}</Make>
<Price>{$Price}</Price><Year>{$Year}</Year><Mileage>{$Mileage}</Mileage> </Record>

} </QueryResult>

Fig. 7. XQuery to Search an Annotated Web Page.

=, Nissan, true〉, 〈Price, <, 5000, true〉, 〈Year, ≥, 1990, true〉, 〈Mileage, <,
120000, true〉.

Given a set of concept filters, we can readily search a web page by generating
an XQuery (e.g. Figure 7) over an external semantic web annotation disclosure
file (e.g. Figure 6). Each filter expression generates a let clause to look up the
corresponding extracted value, a phrase within the where clause to test the given
condition, and an element in the return clause to generate XML that contains
the extracted value. In our running example, all the concepts happen to be
optional; for required concepts we drop the “or empty(...)” phrase. To perform
semantic web searches, we apply this query to all documents that are applicable
to the given domain, collect the results, and display them to the user in tabular
format as Figure 2 shows.

Note that optional elements might not be present in some of the records, and
thus—as is the case with the ordinary web—our semantic web queries may return
irrelevant results. For example, suppose a car ad does not list the car’s color,
but otherwise it satisfies the user’s constraints. Rather than miss a potential
object of interest, we allow optional elements to be missing, and we return the
partial record with the query results. It would not be hard to allow users to
override this behavior and require the presence of all concepts in each of the query
results (imagine a checkbox that allows the user to require all filters to match).
Another aspect not demonstrated by the running example is what happens when
a concept is mentioned in the query, but there is no operator indicated for
comparison. For example, suppose the user added “I’m okay with any body
style” to the query. In this case, “body” is a keyword for the BodyType concept
in our ontology. Since a relevant keyword is present, the system extracts a filter
expression 〈BodyType, ∅, ∅, true〉. The generated XQuery then includes a let
clause and output tags in the return clause for BodyStyle, similar to those for
the other concepts in Figure 7. Nothing is added to the where clause because no
additional selection is appropriate. Thus, the query result returns any BodyType
it finds (e.g., Sedan, Hatchback, Convertible) as part of the result.



6 Concluding Remarks

We have presented an approach to semantic web-page annotation and query
processing that is based on the use of data-extraction ontologies. This paper
presents two major contributions:

1. A mechanism for automatically generating semantic annotations for ordinary
web pages based on an extraction ontology, and

2. A means for querying these annotated web pages in a simple, free-form,
natural-language manner.

Our prototype tool is in the initial stages. We do have a first version running,
but queries are limited to conjunctive queries. Besides supporting only implicit
AND operators, it would be useful to consider how to structure more-complex
queries that involve explicit AND, OR, and NOT operators. However, we must
be careful because we want users to be able to write queries in ordinary natural
language, not controlled natural language. Nonetheless, there may be NLP tech-
niques that could help us refine our query-processing accuracy. Full NLP parsing
of queries might be useful sometimes, but since users are often telegraphic in their
queries, we are considering “shallow parsing” as a means of identifying phrase
chunks that could help us understand the query intent and map the query more
accurately into the ontology. We also need to augment the current prototype to
handle richer ontology structures that, for example, require more joins than do
the applications we have tested thus far.

We intend to perform empirical studies to validate our approach over a
broader range of queries. In prior experiments, we achieved a fairly high measure
of precision and recall for data extraction [13]. We expect that our annotation
and query approach will have similar performance characteristics, but we need to
check this formally. Our approach is likely to be useful in those situations where
rigidly precise data is not required. We assume that a human will interpret our
query results much as a human typically interprets search-engine results. As we
continue our work, we expect to learn more about the range of applications for
which this approach is well suited.

The future of the semantic web is bright, but delivering on its vision will
not be easy. Effective deployment of the semantic web requires some way to
automatically accommodate the huge quantity of existing web pages on the
ordinary web, and some way to handle ordinary user requests. Our approach
addresses these challenges.
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