Abstract
There are two reasons for parallelizing a metaheuristic if one is interested in performance: (i) given a fixed time to search, the aim is to increase the quality of the solutions found in that time; (ii) given a fixed solution quality, the aim is to reduce the time needed to find a solution not worse than that quality. In this article, we study the impact of communication when we parallelize a high-performing ant colony optimization (ACO) algorithm for the traveling salesman problem using message passing libraries. In particular, we examine synchronous and asynchronous communications on different interconnection topologies. We find that the simplest way of parallelizing the ACO algorithms, based on parallel independent runs, is surprisingly effective; we give some reasons as to why this is the case.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley Series on Parallel and Distributed Computing. Wiley-Interscience, Hoboken, NJ (2005)
Tanese, R.: Parallel genetic algorithms for a hypercube. In: Proceedings of the second international conference on Genetic Algorithms and their Applications, Hillsdale, NJ, Lawrence Erlbaum Associates, Inc., pp. 177–183 (1987)
Bullnheimer, B., Kotsis, G., Strauß, C.: Parallelization strategies for the Ant System. In: De Leone, R., et al. (eds.) High Performance Algorithms and Software in Non-linear Optimization, pp. 87–100. Kluwer Academic Publishers, Norwell, MA (1998)
Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. Journal of Heuristics 8(3), 305–320 (2002)
Piriyakumar, D.A.L., Levi, P.: A new approach to exploiting parallelism in ant colony optimization. In: International Symposium on Micromechatronics and Human Science (MHS) 2002, Nagoya, Japan. Proceedings, IEEE Standard Office, pp. 237–243 (2002)
Benkner, S., Doerner, K.F., Hartl, R.F., Kiechle, G., Lucka, M.: Communication strategies for parallel cooperative ant colony optimization on clusters and grids. In: Complimentary Proceedings of PARA 2004 Workshop on State-of-the-Art in Scientific Computing, June 20-23, 2004, Lyngby, Denmark, pp. 3–12 (2005)
Garey, M.R., Johnson, D.S.: Computers and Intractability / A Guide to the Theory of \({\cal NP}\)-Completeness. W.H. Freeman & Company, San Francisco, CA (1979)
Stützle, T., Hoos, H.H.: \(\cal MAX\)–\(\cal MIN\) Ant System. Future Generation Computer System 16(8), 889–914 (2000)
Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 722–731. Springer, Heidelberg (1998)
Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1991)
Dorigo, M.: Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora naturale. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1992)
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-based search for combinatorial optimization: A critical survey. Annals of Operations Research 131, 373–395 (2004)
Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to parallel computing, 2nd edn. Pearson - Addison Wesley, Harlow (2003)
Reinelt, G.: TSPLIB (2004), http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95/index.html
Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)
Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70 (1979)
Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers Inc, San Francisco (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Manfrin, M., Birattari, M., Stützle, T., Dorigo, M. (2006). Parallel Ant Colony Optimization for the Traveling Salesman Problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, vol 4150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839088_20
Download citation
DOI: https://doi.org/10.1007/11839088_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38482-3
Online ISBN: 978-3-540-38483-0
eBook Packages: Computer ScienceComputer Science (R0)