Skip to main content

A Parallel ACO Approach Based on One Pheromone Matrix

  • Conference paper
Ant Colony Optimization and Swarm Intelligence (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4150))

  • 3588 Accesses

Abstract

This paper presents and implements an approach to parallel ACO algorithms. The principal idea is to make multiple ant colonies share and utilize only one pheromone matrix. We call it SHOP (SHaring One Pheromone matrix) approach. We apply this idea to the two currently best instances of ACO sequential algorithms (MMAS and ACS), and try to hybridize these two different ACO instances. We mainly describe how to design parallel ACS and MMAS based on SHOP. We present our computing results of applying our approach to solving 10 symmetric traveling salesman problems, and give comparisons with the relevant sequential versions under the fair computing environment. The experimental results indicate that SHOP-ACO algorithms perform overall better than the sequential ACO algorithms in both the computation time and solution quality.

Supported by 211 Project of Soochow University, PRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bullnheimer, B., Kotsis, G., Strauß, C.: Parallelization strategies for the ant system. Applied Optimization 24, 87–100 (1998)

    Google Scholar 

  2. Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. Journal of Heuristics 8(3), 305–320 (2002)

    Article  MATH  Google Scholar 

  3. Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 722–731. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Talbi, E.G., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for combinatorial optimization problems. In: Rolim, J.D.P. (ed.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 239–247. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Talbi, E.G., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for the quadratic assignment problem. Future Generation Computer Systems 17, 441–449 (2001)

    Article  MATH  Google Scholar 

  6. Randall, M., Lewis, A.: A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing 62, 1421–1432 (2002)

    Article  MATH  Google Scholar 

  7. Chu, S.C., Roddick, J.F., Pan, J.S., Su, C.J.: Parallel ant colony systems. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 279–284. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Delisle, P., Krajecki, M., Gravel, M., Gagné, C.: Parallel implementation of an ant colony optimization metaheuristic with openmp. In: International Conference on Parallel Architectures and Compilation Techniques (2001)

    Google Scholar 

  9. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

  10. Fischer, D.: On super linear speedups. Parallel Computing 17, 695–697 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lv, Q., Xia, X., Qian, P. (2006). A Parallel ACO Approach Based on One Pheromone Matrix. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, vol 4150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839088_30

Download citation

  • DOI: https://doi.org/10.1007/11839088_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38482-3

  • Online ISBN: 978-3-540-38483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics