Abstract
This paper presents and implements an approach to parallel ACO algorithms. The principal idea is to make multiple ant colonies share and utilize only one pheromone matrix. We call it SHOP (SHaring One Pheromone matrix) approach. We apply this idea to the two currently best instances of ACO sequential algorithms (MMAS and ACS), and try to hybridize these two different ACO instances. We mainly describe how to design parallel ACS and MMAS based on SHOP. We present our computing results of applying our approach to solving 10 symmetric traveling salesman problems, and give comparisons with the relevant sequential versions under the fair computing environment. The experimental results indicate that SHOP-ACO algorithms perform overall better than the sequential ACO algorithms in both the computation time and solution quality.
Supported by 211 Project of Soochow University, PRC.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bullnheimer, B., Kotsis, G., Strauß, C.: Parallelization strategies for the ant system. Applied Optimization 24, 87–100 (1998)
Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. Journal of Heuristics 8(3), 305–320 (2002)
Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 722–731. Springer, Heidelberg (1998)
Talbi, E.G., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for combinatorial optimization problems. In: Rolim, J.D.P. (ed.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 239–247. Springer, Heidelberg (1999)
Talbi, E.G., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for the quadratic assignment problem. Future Generation Computer Systems 17, 441–449 (2001)
Randall, M., Lewis, A.: A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing 62, 1421–1432 (2002)
Chu, S.C., Roddick, J.F., Pan, J.S., Su, C.J.: Parallel ant colony systems. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 279–284. Springer, Heidelberg (2003)
Delisle, P., Krajecki, M., Gravel, M., Gagné, C.: Parallel implementation of an ant colony optimization metaheuristic with openmp. In: International Conference on Parallel Architectures and Compilation Techniques (2001)
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
Fischer, D.: On super linear speedups. Parallel Computing 17, 695–697 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lv, Q., Xia, X., Qian, P. (2006). A Parallel ACO Approach Based on One Pheromone Matrix. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, vol 4150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839088_30
Download citation
DOI: https://doi.org/10.1007/11839088_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38482-3
Online ISBN: 978-3-540-38483-0
eBook Packages: Computer ScienceComputer Science (R0)