Skip to main content

Hybrid Particle Swarm Optimization: An Examination of the Influence of Iterative Improvement Algorithms on Performance

  • Conference paper
Ant Colony Optimization and Swarm Intelligence (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4150))

  • 3535 Accesses

Abstract

In this article, we study hybrid Particle Swarm Optimization (PSO) algorithms for continuous optimization. The algorithms combine a PSO algorithm with either the Nelder-Mead-Simplex or Powell’s Direction-Set local search methods. Local search is applied each time the PSO part meets some convergence criterion. Our experimental results for test functions with up to 100 dimensions indicate that the usage of the iterative improvement algorithms can strongly improve PSO performance but also that the preferable choice of which local search algorithm to apply depends on the test function. The results also suggest that another main contribution of the local search is to make PSO algorithms more robust with respect to their parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  2. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

    Google Scholar 

  3. Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research 33(3), 859–871 (2006)

    Article  MATH  Google Scholar 

  4. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  5. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation 8(3), 204–210 (2004)

    Article  Google Scholar 

  6. Hoos, H.H., Stützle, T.: Stochastic Local Search-Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2004)

    Google Scholar 

  7. Fan, S., Liang, Y., Zahara, E.: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions. Engineering Optimization 36(4), 401–418 (2004)

    Article  Google Scholar 

  8. Wang, F., Qiu, Y., Bai, Y.: A new hybrid NM method and particle swarm algorithm for multimodal function optimization. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 497–508. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (1992)

    Google Scholar 

  10. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol. 1, pp. 84–88 (2000)

    Google Scholar 

  11. Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 1931–1938 (1999)

    Google Scholar 

  12. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. Journal of Global Optimization 31(4), 635–672 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gimmler, J., Stützle, T., Exner, T.E. (2006). Hybrid Particle Swarm Optimization: An Examination of the Influence of Iterative Improvement Algorithms on Performance. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, vol 4150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839088_43

Download citation

  • DOI: https://doi.org/10.1007/11839088_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38482-3

  • Online ISBN: 978-3-540-38483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics