Abstract
In this article, we study hybrid Particle Swarm Optimization (PSO) algorithms for continuous optimization. The algorithms combine a PSO algorithm with either the Nelder-Mead-Simplex or Powell’s Direction-Set local search methods. Local search is applied each time the PSO part meets some convergence criterion. Our experimental results for test functions with up to 100 dimensions indicate that the usage of the iterative improvement algorithms can strongly improve PSO performance but also that the preferable choice of which local search algorithm to apply depends on the test function. The results also suggest that another main contribution of the local search is to make PSO algorithms more robust with respect to their parameter settings.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)
Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research 33(3), 859–871 (2006)
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)
Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation 8(3), 204–210 (2004)
Hoos, H.H., Stützle, T.: Stochastic Local Search-Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2004)
Fan, S., Liang, Y., Zahara, E.: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions. Engineering Optimization 36(4), 401–418 (2004)
Wang, F., Qiu, Y., Bai, Y.: A new hybrid NM method and particle swarm algorithm for multimodal function optimization. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 497–508. Springer, Heidelberg (2005)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (1992)
Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol. 1, pp. 84–88 (2000)
Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 1931–1938 (1999)
Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)
Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. Journal of Global Optimization 31(4), 635–672 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gimmler, J., Stützle, T., Exner, T.E. (2006). Hybrid Particle Swarm Optimization: An Examination of the Influence of Iterative Improvement Algorithms on Performance. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, vol 4150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839088_43
Download citation
DOI: https://doi.org/10.1007/11839088_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38482-3
Online ISBN: 978-3-540-38483-0
eBook Packages: Computer ScienceComputer Science (R0)