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Abstract. We present a modified version of the Particle swarm Opti-
mization algorithm in which we adjust the virtual swarm search by in-
corporating inter-agent dynamics native to multi-robot search scenarios.
The neighborhood structure of PSO is modified to accurately represent
feasible neighborhoods in multiple robot systems with limited communi-
cation in several different ways. The new algorithms are tested on several
standard benchmark problems with a varying number of dimensions and
are shown to offer superior performances to the standard algorithm in
some cases. Further potential modifications and uses of the new algo-
rithms are discussed.

1 Introduction

Throughout the history of research, some of the most innovative and useful dis-
coveries have arisen from a fusion of two or more seemingly unrelated fields of
study; a characteristic of some method or process is enfused into a completely
disjoint technique, and the resulting creation exhibits superior behavior. Some
common examples include simulated annealing modeled after the annealing pro-
cess in physics [10], Ant Colony Optimization modeled after the behavior of
social insects [2], and the Particle Swarm Optimization algorithm modeled after
the patterns of flocking birds [5], [8].

Particle swarm optimization (PSO) is a promising new optimization tech-
nique developed by James Kennedy and Russell Eberhart [5] [8] which models a
set of potential problem solutions as a swarm of particles searching in a virtual
space for good solutions. The method was inspired by the movement of flocking
birds and their interactions with their neighbors in the group. Every particle in
the swarm begins with a randomized position (x;) and (possibly) randomized
velocity (v;) in the n-dimensional search space, where z; ; represents the location
of particle index ¢ in the j-th dimension of the search space. Candidate solutions
are optimized by flying the particles through the virtual space, with attraction
to positions in the space that yielded the best results. Each particle remembers
at which position it achieved its highest performance (:c;" j). Every particle is
also a member of some neighborhood of particles, and remembers which parti-
cle achieved the best overall position in that neighborhood (given by the index



i’). This neighborhood can either be a subset of the particles (local neighbor-
hood), or all the particles (global neighborhood). For local neighborhoods, the
standard method is to set neighbors in a pre-defined way (such as using parti-
cles with the closest array indices as neighbors modulo the size of the swarm,
henceforth known as a “ring topology”) regardless of the particles’ positions in
the search space. Global neighborhoods tend to be favored for problems where
immediate convergence is desired, while local neighborhoods are preferable for
problems with local optima where a purely greedy algorithm may become stuck.
The equations executed by PSO at each step of the algorithm are:

vij = w - vij +pw-rand() - (z7; — i ;)
+ nw - rand() - (ac:,’j — Zij)

Tij = Tij + Vi

where w is the inertia coefficient which slows the velocity over time to prevent
explosions of the swarm and ensure ultimate convergence, pw is the weight given
to the attraction to the previous best location of the current particle and nw is
the weight given to the attraction to the previous best location of the particle
neighborhood. rand() is a sampling of a uniformly-distributed random variable
in [0,1].

Within the field of multi-robot systems, one area that has received some at-
tention is collective robotic search, where a group of robots works together to
localize one or more targets (e.g., [1], [3], [4], [6], [7], [L1]). Using a collective
robotic approach in search tasks can offer several major benefits over the single
robot alternative. Searching can be done massively in parallel, significantly de-
creasing the time taken to locate the target(s) and improving robustness against
failure of single agents by redundancy as well as individual simplicity. The scal-
ability of the system provides a simple method to further increase the rate and
robustness by simply adding more agents. The system is also less prone to poor
decision-making, as the swarm provides more sensory and environmental infor-
mation than a single robot can. This could allow for a more informed choice,
which can further increase the speed at which the swarm operates.

Both PSO and collective robotic search are instances of multi-agent search.
For PSO, the search is virtual, and there are no limitations to particle movement,
while multi-robot search is situated in the real world, and robots are limited by
physical constraints, such as inter-robot collisions and limited communication
range. However, there may be characteristics and ideas which can be shared
between the two search scenarios to improve one or both; adapting the strategies
of PSO particles could yield an effective search technique in multi-robot systems,
and the dynamics of the collective robotic search might generate interesting
effects in the PSO algorithm. There has thus far been fairly little work in this
area. A one-to-one mapping from particles in PSO to robots in a collective robotic
system was used for distributed unsupervised multi-robot learning in [12].

In this paper, we modify the neighborhood structure of Particle Swarm Op-
timization to incorporate the limited communication range common to members



of a mobile multi-robot system. Section 2 presents our modifications to the al-
gorithm. Section 3 compares the new algorithms’ performance against standard
PSO on a set of benchmark problems with low dimensionality. Section 4 tests
the algorithms on problems with higher dimensionality. Section 5 discusses the
implications of the results, and Section 6 explores possible improvements and
applications of the algorithm and concludes the paper.

2 Robotic Communication-Based Neighborhoods

In multi-robot scenarios, communication range is often limited. Untethered robots
have a very limited amount of available energy at their disposal, and it is impor-
tant to conserve this by restricting transmission power. Also, if communication
range is too large, interference between signals can decrease the rate at which
data can be sent. During collective robotic search, robots will often only commu-
nicate their observations with nearby neighbors. In the standard neighborhood
setup of PSO, if we consider sharing information in a particle neighborhood as
communication, particles may be required to communicate with other particles
that are far from their position in the virtual search space. Therefore, to realisti-
cally model a multi-robot system, particle neighborhoods should be set in such a
way that particles are not required to communicate with other particles outside
of some close proximity.

We adopt the two neighborhood models suggested in [12] for communicating
robots:

Model A: At each iteration of the algorithm, every particle selects itself and
the two other particles with the smallest distance to it in the virtual search space
as its neighborhood. This maintains a particle neighborhood of size three for the
entire evolution, but allows the neighbors to change at every iteration. By only
grouping particles that are near in the virtual space, we may significantly alter
the convergence of the algorithm on different problems.

Model B: At each iteration of the algorithm, every particle selects itself
and all other particles within some radius r in the virtual search space as its
neighborhood. This results in a variable number of neighbors, as a particle may
be close to very few or very many other particles at different times. However,
it is perhaps more realistic than Model 1, since robot communication range has
an upper limit, and for very sparse agent distributions, there may be fewer than
two others within communication range at times. We expect that as the swarm
converges, the particles will cluster together and the number of neighbors will
increase.

Both of these models require the calculation of inter-particle distances in the
virtual search space, which will require additional processing. However, in many
PSO problems, the vast majority of processing time is spent on evaluation of the
problem function rather than on the overhead required for the PSO algorithm. In
these cases, the additional computation required for the robotic communication-
based neighborhoods should be negligible.



3 Benchmark Evaluation with Low Dimensionality

Because collective robotic search takes place in the real world, the search space
will always be either 2-dimensional (e.g., finding a target on the ground) or
3-dimensional (e.g., flying or swimming robots). To better match PSO and col-
lective robotic search, we initially evaluate our PSO algorithm on several bench-
mark problems encoded in three dimensions.

3.1 Setup

We use the standard test functions from [9]. Functions can be found in Table
1, along with the number of iterations run by each algorithm. The number of
iterations was chosen based on empirical evidence for how long the algorithms
took to converge.

Table 1. Test Functions

Function|Function Name Number of Iterations
fi Sphere 50

f Generalized Rosenbrock|1000

f3 Rastrigin 500

fa Griewank 500

The functions are defined as follows:

o
&
[

Z [100(2F — z41) + (1 — z;)?] (2)
fa(z) = Z [7 — 10 cos(27z;) + 10] (3)

i=1

Fal) = 1+K100;:c3;l:[1c08(%) (4)

1=

For all functions, n = 3, and x; was constrained to [—5.12,5.12], the range
used in [9].

For all algorithms, we used an inertia coefficient w of 0.6, with personal best
and neighborhood best weights pw and nw both set to 2.0. We compare the
performances of six variants of PSO: standard PSO with a local neighborhood
ring topology with the nearest particle on each side assigned to be in a particle’s
neighborhood (PSOL), standard PSO with a global neighborhood (PSOG), PSO
with Model A neighborhood (PSOA), and PSO with Model B neighborhood with
radii of 1.0, 5.0, and 10.0 (PSOB1, PSOB5, and PSOB10, respectively).



3.2 Results

The final achieved values and standard deviations for all functions with all al-
gorithms over 100 runs can been seen in Table 2.

Table 2. Performance (and Standard Deviation) of All Algorithms in Three Dimen-
sions

PSOL PSOG PSOA PSOB1 PSOB5 PSOB10

£1]0.000 (0.000){0.000 (0.000){0.000 (0.000){0.004 (0.022)[0.000 (0.000)|0.000 (0.000)
f2(0.023 (0.022)|0.005 (0.020)|0.162 (0.161)]0.669 (2.047)[0.005 (0.016)|0.013 (0.084)
f3(0.042 (0.197)|0.129 (0.365)|0.419 (0.526)|3.648 (2.302)[0.070 (0.225)|0.139 (0.347)
f4{0.003 (0.004)|0.007 (0.005)|0.003 (0.004)[0.006 (0.005)[0.004 (0.004)|0.007 (0.005)
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The progress of the best solutions on f; can be seen in Fig. 1, left. We see that
PSO with a global neighborhood outperforms PSO with a local neighborhood,
as there are no local optima in the Sphere function where the particles could
become stuck. PSO with Model A neighborhood and PSO with Model B, radius
5.0 and 10.0 all do very well on this function, with PSOA converging the most
quickly of any algorithm. PSOB1 performs rather poorly, likely because its small
communication range doesn’t allow it to communicate sufficiently with other
particles.

The progress of the best solutions on f> can be seen in Fig. 1, right. None of
the algorithms are able to consistently reach the minimum. PSOG again outper-
forms PSOL, though perhaps given many more iterations, PSOL might eventu-
ally surpass it. PSOA fairs quite poorly in this situation, suggesting that it may
be very susceptible to becoming stuck in local minima. Both PSOG and PSOB5
achieve the best results here. PSOB10 does slightly worse, while PSOB1 again
performs very poorly.
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Fig. 1. Average of best solutions on f1 (left) and fo (right) in three dimensions over
100 runs.



The progress of the best solutions on f3 can be seen in Fig. 2, left. We
observe a similar situation to that of fo; however, in this case, PSOL is able
to eventually surpass PSOG to obtain a better final performance. PSOB5 also
achieves a better performance than PSOG, though not quite as low as that of
PSOL. PSOB10 performs comparably to PSOG, and PSOA and PSOBI1 again
both do quite poorly.

The progress of the best solutions on f; can be seen in Fig. 2, right. PSOL
quickly surpasses PSOG here, suggesting the existence of local optima. However,
PSOA achieves a very good performance, which indicates that its susceptibility
to becoming stuck in local optima may depend upon other aspects of the fitness
landscape. PSOBb5 again performs very well here.
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Fig. 2. Average of best solutions on fs (left) and f4 (right) in three dimensions over
100 runs.

In summary, PSOG achieved superior performance to PSOL on f; and fs,
while PSOL did better on f3 and fy;. With the Model A neighborhood, very
good performance was achieved on f; and f;, while the performance on the
other two problems was rather poor. The Model B neighborhood with a radius
of 5.0 was one of the top performers on every single problem, making it the
highest performing overall algorithm.

4 Benchmark Evaluation with High Dimensionality

We now compare the performances of the algorithms on the same benchmark
problems, but with 30 dimensions instead of 3.

4.1 Setup

We use the same function set as in the previous section. Because of the higher
function dimensionality, the number of iterations needed to be increased, and
the new amounts can be seen in Table 1.



Table 3. Test Functions

Function|Function Name Number of Iterations
fi Sphere 1000

f2 Generalized Rosenbrock|20000

f3 Rastrigin 10000

fa Griewank 10000

For all functions, n = 30, and x; was still constrained to [—5.12,5.12]. All
algorithmic parameters remained the same as in the previous section. Because
of the higher dimensionality of the virtual the space, the range in PSOB needed
to be increased. We now use radii of 10.0, 30.0, and 40.0 (PSOB10, PSOB30,
and PSOB40, respectively).

4.2 Results
The final achieved values and standard deviations for all functions with all al-

gorithms over 100 runs can been seen in Table 4.

Table 4. Performance (and Standard Deviation) of All Algorithms in 30 Dimensions.
-.- represents no convergence.

PSOL PSOG PSOA PSOB10[PSOB30 |[PSOB40
1]0.297 (0.486)[0.000 (0.002)[0.065 (0.120)]-.- (--) _ [0.000 (0.001)[0.000 (0.001)
2|8.006 (14.89)[14.31 (30.96)[147.3 (119.3)|-- (--) |15.42 (22.58)[17.38 (24.44)
3|64.66 (16.42)[40.66 (11.41)|76.57 (17.42)|-- (--) |40.89 (12.52)[41.00 (12.39)
£2]0.002 (0.005)[0.011 (0.015)[0.012 (0.023)]--- (--) _ [0.009 (0.011)[0.010 (0.012)

The progress of the best solutions on f; can be seen in Fig. 3, left. PSOG,
PSOB30, and PSOB40 all converge to zero at approximately the same rate.
PSOL has very slow convergence here, and doesn’t manage to reach the minimum
after 1000 iterations. PSOA also has difficulties, while PSOB10 doesn’t converge
at all.

The progress of the best solutions on fs can be seen in Fig. 3, right. PSOL
achieves the best performance here, slowly pulling away from PSOG, PSOB30,
and PSOB40 in the later stages of the evolution. PSOA again does not do very
well, and PSOB10 doesn’t converge.

The progress of the best solutions on f3 can be seen in Fig. 4, left. PSOG,
PSOB30, and PSOB40 all achieve the best performance here, with PSOL and
PSOA doing slightly more poorly. PSOB10 again has no convergence.

The progress of the best solutions on f; can be seen in Fig. 4, right. PSOL
clearly achieves the best results here. All others become stuck very early in the
evolution except for PSOB10 which again doesn’t converge. PSOB30 achieves
marginally better performance than PSOG.
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Fig. 3. Average of best solutions on f; (left) and f> (right) in 30 dimensions over 100
runs.
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Fig. 4. Average of best solutions on f3 (left) and f4 (right) in 30 dimensions over 100
runs.

The performance of the robotic communication-based neighborhoods was
much poorer here. The Model A neighborhood algorithm did not achieve very
good performance on any of the problems. The Model B neighborhood with a
communication radius of 10.0 was unable to converge in all cases. The Model B
neighborhood algorithm for radii of 30.0 and 40.0 both performed approximately
as well as PSOG, with PSOB30 doing perhaps slightly better on fy.

5 Discussion

Both neighborhood models had some success on problems with low dimensionali-
ties. Although the Model A neighborhood did rather poorly on several problems,
it outperformed all other algorithms on two of the benchmark problems, includ-
ing the Sphere function. This suggests that a neighborhood of this type may
be preferred in certain scenarios, including those where very fast convergence is
desired. A possible explanation for this behavior is that by using only the closest



particles as neighbors, a particle is much more likely to move along the gradient
in that region of the search space, which would promote faster convergence, but
could limit particles’ ability to escape local optima.

The Model B neighborhood with radius 5.0 did very well in low dimen-
sionalities, achieving near optimal performance on all problems. One possible
explanation for this is that in the early stages of the algorithm, particles are
distributed and have rather few neighbors, which allows them to explore the
space more thoroughly. Once particles begin to converge, the inter-particle dis-
tance decreases, which increases the neighborhood size and leads to more rapid
convergence. This gives a good tradeoff between exploration and exploitation
throughout the evolutionary process.

The reason for the lower performance of the robotic communication-based
neighborhoods in higher dimensionalities is not completely clear. A strong pos-
sibility is that because we use the same number of particles in both 3 and 30
dimensions, the spatial density of the particles in 30 dimensions is so much lower
that the communication-based neighborhoods no longer function nearly as effec-
tively. To compensate for this, it might be advisable to use a different metric for
calculating neighborhoods than the standard definition of distance (1/_, dz%)
to reduce the impact of increasing dimensions (e.g., Y . dx;). The very poor
performance of PSOB10 can be easily explained, as the “volume” covered by a
sphere of radius 10.0 in a 30-dimensional space is less than 107! the size of a
sphere of radius 30.0, which would cause particles using this neighborhood to
almost never share information with any other particle. This demonstrates that
the radius in Model B must be tuned much more carefully in higher dimensional
spaces.

6 Conclusion and Outlook

We have presented new models for particle neighborhoods in the Particle Swarm
Optimization algorithm based on the communication of robots in collective
robotic search. These models offer superior performance to PSO on standard
benchmark problems with low dimensionality, but do not perform as well on
higher dimensional problems. Possible explanations for the algorithms behaviors
have been given.

The work presented here could be expanded upon in several different ways:
Use Different Distance Metrics - there were indications that the standard dis-
tance metric may not scale well with the dimensionality of the problem. Different
distance metrics may prove to be more effective.

Incorporate Other Aspects of Collective Robotic Search - we have thus far only
modified the neighborhood structure of PSO to match than of multi-robot search.
Including other aspects such as obstacle avoidance or robotic dispersion might
offer interesting results.

Analyze and Model Details of Multi-Agent Search - the nuances of agent dy-
namics is not thoroughly understood in either PSO or collective robotic search.
By closely observing the behavior of the agents over time, we may be to able



to better understand the similarities and differences between the two different
search scenarios, which might allow us to make more intelligent modifications to
both. Ultimately, it would be very beneficial to develop an abstracted model of
the systems which could be used to predict behavior in both scenarios, as well
as prove properties of the swarm such as convergence and stability.
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