Skip to main content

Evolution in Swarm Intelligence: An Evolutionary Ant-Based Optimization Algorithm

  • Conference paper
Ant Colony Optimization and Swarm Intelligence (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4150))

  • 3550 Accesses

Abstract

Swarm Intelligent (SI) algorithms draw their inspiration from the interaction of individuals of social organisms. One such algorithm, Ant Colony Optimization (ACO) [1], utilizes the foraging behavior of ants to solve combinatorial optimization problems. Although ACO performs well in a static environment, it has been pointed out that ACO does not perform as well as other heuristics in dynamic situations such as routing. This paper proposes a new algorithm, entitled Evolutionary Ant Colony Optimization (EACO), that combines ACO with elements of Genetic Algorithms (GA). By adding evolution, the EACO algorithm allows the individual ants to develop their own characteristics, thereby removing the homogeneity inherent within ACO. Our results demonstrate the potential of this approach in a dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill, London (1999)

    Google Scholar 

  2. White, T., Pagurek, B., Oppacher, F.: ASGA: Improving the ant system by integration with genetic algorithms. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp. 610–617. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roach, C., Menezes, R. (2006). Evolution in Swarm Intelligence: An Evolutionary Ant-Based Optimization Algorithm. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, vol 4150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839088_57

Download citation

  • DOI: https://doi.org/10.1007/11839088_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38482-3

  • Online ISBN: 978-3-540-38483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics