Skip to main content

Chemical Information Processing Devices Constructed Using a Nonlinear Medium with Controlled Excitability

  • Conference paper
Unconventional Computation (UC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4135))

Included in the following conference series:

Abstract

Chemical signals composed of excitation pulses can be processed in a medium with an appropriate geometrical arrangement of excitable and non-excitable regions. In this paper we consider two types of signal processing devices: a binary logic gate and a four input, neuron like structure. Using numerical simulations, we demonstrate that small local changes in the excitability level of the medium can completely change the function executed by the device and can thus be used to program it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A., Costello, D.B., Asai, T.: Reaction-Diffusion Computers. Elsevier Science, Amsterdam (2005)

    Google Scholar 

  2. Asai, T., Nishiyama, Y., Amemiya, Y.: A CMOS reaction-diffusion circuit based on cellular-automaton processing emulating the Belousov-Zhabotinsky reaction. IEICE Trans. Fund. E85-A, 2093–2096 (2002)

    Google Scholar 

  3. Motoike, I., Yoshikawa, K.: Information Operations with an Excitable Field. Phys. Rev. E. 59, 5354–5360 (1999)

    Article  Google Scholar 

  4. Motoike, N.I., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real-Time Memory on an Excitable Field. Phys. Rev. E. 63(1–4), 036220 (2001)

    Article  Google Scholar 

  5. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J. Phys. Chem. A 107, 1664–1669 (2003)

    Article  Google Scholar 

  6. Gorecka, J., Gorecki, J.: T-shaped coincidence detector as a band filter of chemical signal frequency. Phys. Rev. E 67(1–4), 67203 (2003)

    Article  Google Scholar 

  7. Motoike, N.I., Yoshikawa, K.: Information operations with multiple pulses on an excitable field. Chaos, Solitons & Fractals 17, 455–461 (2003)

    Article  Google Scholar 

  8. Nagahara, H., Ichino, T., Yoshikawa, K.: Direction detector on an excitable field: Field computation with coincidence detection. Phys. Rev. E 70(1–5), 36221 (2004)

    Article  Google Scholar 

  9. Motoike, N.I., Adamatzky, A.: Three-valued logic gates in reaction–diffusion excitable media. Chaos, Solitons & Fractals 24, 107–114 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Gorecki, J., Gorecka, J., Yoshikawa, K., Igarashi, Y., Nagahara, H.: Sensing the distance to a source of periodic oscillations in a nonlinear chemical medium with the output information coded in frequency of excitation pulses. Phys. Rev. E 72(1–7), 46201 (2005)

    Article  Google Scholar 

  11. Adamatzky, A.: Programming Reaction-Diffusion Processors. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 33–46. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Agladze, K., Aliev, R.R., Yamaguchi, T., Yoshikawa, K.: Chemical diode. J. Phys. Chem. 100, 13895–13897 (1996)

    Article  Google Scholar 

  13. Brandstadter, H., Braune, M., Schebesch, I., Engel, H.: Experimental study of the dynamics of spiral pairs in light-sensitive Belousov-Zhabotinskii media using an open-gel reactor. Chem. Phys. Lett. 323, 145–154 (2000)

    Article  Google Scholar 

  14. Sendina-Nadal, I., Mihaliuk, E., Wang, J., Perez-Munuzuri, V., Showalter, K.: Wave propagation in subexcitable media with periodically modulated excitability. Phys. Rev. Lett. 86, 1646–1649 (2001)

    Article  Google Scholar 

  15. Sakurai, T., Mihaliuk, E., Chirila, F., Showalter, K.: Design and control of wave propagation patterns in excitable media. Science 296, 2009–2012 (2002)

    Article  Google Scholar 

  16. Adamatzky, A.: Collision-based computing in Belousov–Zhabotinsky medium Chaos. Solitons & Fractals 21, 1259–1264 (2004)

    Article  MATH  Google Scholar 

  17. Sielewiesiuk, J., Gorecki, J.: Complex transformations of chemical signals passing through a passive barrier. Phys. Rev. E 66(1–9), 16212 (2002)

    Article  Google Scholar 

  18. Gossen, C., Niedernostheide, J.F., Purwins, G.H.: Pattern Formation of the Electroluminescence in AC ZnS: Mn Devices. In: Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, Springer Proceedings in Physics, vol. 79, pp. 112–132. Springer, Berlin (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Igarashi, Y., Gorecki, J., Gorecka, J.N. (2006). Chemical Information Processing Devices Constructed Using a Nonlinear Medium with Controlled Excitability. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds) Unconventional Computation. UC 2006. Lecture Notes in Computer Science, vol 4135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839132_11

Download citation

  • DOI: https://doi.org/10.1007/11839132_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38593-6

  • Online ISBN: 978-3-540-38594-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics