Abstract
This work concerns the computational complexity of a model of computation that is inspired by optical computers. The model is called the continuous space machine and operates in discrete timesteps over a number of two-dimensional images of fixed size and arbitrary spatial resolution. The (constant time) operations on images include Fourier transformation, multiplication, addition, thresholding, copying and scaling. We survey some of the work to date on the continuous space machine. This includes a characterisation of the power of an important discrete restriction of the model. Parallel time corresponds, within a polynomial, to sequential space on Turing machines, thus satisfying the parallel computation thesis. A characterisation of the complexity class NC in terms of the model is also given. Thus the model has computational power that is (polynomially) equivalent to that of many well-known parallel models. Such characterisations give a method to translate parallel algorithms to optical algorithms and facilitate the application of the complexity theory toolbox to optical computers. In the present work we improve on these results. Specifically we tighten a lower bound and present some new resource trade-offs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arsenault, H.H., Sheng, Y.: An introduction to optics in computers. Tutorial texts in optical engineering, vol. TT 8. SPIE (1992)
Balcázar, J.L., Díaz, J., Gabarró, J.: Structural complexity II. EATCS Monographs on Theoretical Computer Science, vol. 22. Springer, Berlin (1988)
Bracewell, R.N.: The Fourier transform and its applications, 2nd edn. Electrical and electronic engineering series. McGraw-Hill, New York (1978)
Caulfield, H.J.: Space-time complexity in optical computing. In: Javidi, B. (ed.) Optical information-processing systems and architectures II, vol. 1347, pp. 566–572 (July 1990)
Chandra, A.K., Stockmeyer, L.J.: Alternation. In: 17th Annual Symposium on Foundations of Computer Science, Houston, Texas, pp. 98–108. IEEE, Los Alamitos (1976)
Feitelson, D.G.: Optical Computing: A survey for computer scientists. MIT Press, Cambridge (1988)
Goldschlager, L.M.: Synchronous parallel computation. PhD thesis, University of Toronto, Computer Science Department (December 1977)
Goldschlager, L.M.: A universal interconnection pattern for parallel computers. Journal of the ACM 29(4), 1073–1086 (1982)
Goodman, J.W.: Introduction to Fourier optics, 2nd edn. McGraw-Hill, New York (1996)
Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-completeness theory. Oxford University Press, Oxford (1995)
Karp, R.M., Ramachandran, V.: Parallel algorithms for shared memory machines. vol. A. Elsevier, Amsterdam (1990)
Lee, J.N.: Design issues in optical processing. In: Cambridge studies in modern optics. Cambridge University Press, Cambridge (1995)
Louri, A., Post, A.: Complexity analysis of optical-computing paradigms. Applied optics 31(26), 5568–5583 (1992)
McAulay, A.D.: Optical computer architectures. Wiley, Chichester (1991)
Naughton, T., Javadpour, Z., Keating, J., Klíma, M., Rott, J.: General-purpose acousto-optic connectionist processor. Optical Engineering 38(7), 1170–1177 (1999)
Naughton, T.J.: Continuous-space model of computation is Turing universal. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 121–128. Springer, Heidelberg (2006)
Naughton, T.J.: A model of computation for Fourier optical processors. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 24–34. Springer, Heidelberg (2006)
Naughton, T.J., Woods, D.: On the computational power of a continuous-space optical model of computation. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 288–299. Springer, Heidelberg (2001)
Parberry, I.: Parallel complexity theory. Wiley, Chichester (1987)
Pratt, V.R., Rabin, M.O., Stockmeyer, L.J.: A characterisation of the power of vector machines. In: Proc. 6th Annual ACM Symposium on Theory of Computing, pp. 122–134. ACM Press, New York (1974)
Pratt, V.R., Stockmeyer, L.J.: A characterisation of the power of vector machines. Journal of Computer and Systems Sciences 12, 198–221 (1976)
Reif, J.H., Tyagi, A.: Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive. Applied optics 36(29), 7327–7340 (1997)
van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 1, vol. A. Elsevier, Amsterdam (1990)
VanderLugt, A.: Optical Signal Processing. Wiley Series in Pure and Applied Optics. Wiley, New York (1992)
Weihrauch, K.: Computable Analysis: An Introduction. Texts in Theoretical Computer Science. Springer, Berlin (2000)
Woods, D.: Computational complexity of an optical model of computation. PhD thesis, National University of Ireland, Maynooth (2005)
Woods, D.: Upper bounds on the computational power of an optical model of computation. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 777–788. Springer, Heidelberg (2005)
Woods, D., Gibson, J.P.: Complexity of continuous space machine operations. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 540–551. Springer, Heidelberg (2005)
Woods, D., Gibson, J.P.: Lower bounds on the computational power of an optical model of computation. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 237–250. Springer, Heidelberg (2005)
Woods, D., Naughton, T.J.: An optical model of computation. Theoretical Computer Science 334(1–3), 227–258 (2005)
Yu, F.T.S., Jutamulia, S., Yin, S. (eds.): Introduction to information optics. Academic Press, London (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Woods, D. (2006). Optical Computing and Computational Complexity. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds) Unconventional Computation. UC 2006. Lecture Notes in Computer Science, vol 4135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11839132_4
Download citation
DOI: https://doi.org/10.1007/11839132_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38593-6
Online ISBN: 978-3-540-38594-3
eBook Packages: Computer ScienceComputer Science (R0)